
Dynamic Back-Substitution in
Bound-Propagation-Based Neural Network Verification

Panagiotis Kouvaros1,2, Benedikt Brückner1, 3, Patrick Henriksen1, Alessio Lomuscio1,3

1Safe Intelligence, UK
2Department of Information Technologies, University of Limassol, Cyprus

3Department of Computing, Imperial College London, UK
pkouvaros@uol.ac.cy, benedikt@safeintelligence.ai, patrick@safeintelligence.ai, alessio@safeintelligence.ai

Abstract

We improve the efficacy of bound-propagation-based neural
network verification by reducing the computational effort re-
quired by state-of-the-art propagation methods without incur-
ring any loss in precision. We propose a method that infers the
stability of ReLU nodes at every step of the back-substitution
process, thereby dynamically simplifying the coefficient ma-
trix of the symbolic bounding equations. We develop a heuris-
tic for the effective application of the method and discuss its
evaluation on common benchmarks where we show signifi-
cant improvements in bound propagation times.

1 Introduction
The use of neural systems in safety-critical applications
such as autonomous systems or aviation requires the abil-
ity to provide assurance guarantees on the overall system
behaviour. This is known to be problematic for neural net-
works due to possible fragilities (Szegedy et al. 2014) in
distribution and potentially unpredictable behaviour out of
distribution. While testing and simulation can aid the vali-
dation process for these systems, the approaches fall short
of providing the deterministic guarantees that are typically
required for certification and deployment.

Formal verification methods for neural networks assess
whether different properties hold for a given model. One
such property is local robustness capturing whether the
model is stable in the dense neighbourhood of a given in-
put under a perturbation of interest. For computer vision ap-
plications noteworthy perturbations include noise, geomet-
ric variations, and photometric perturbations (such as con-
trast, luminosity and bias-field changes), which are particu-
larly usefull in the modelling of photometric phenomena in
applications such as autonomous aviation (Kouvaros et al.
2021). While rapid progress has been made in the area over
the past few years, performance remains a key objective to
address ever larger models used in applications.

Symbolic interval propagation (Wang et al. 2018b,a;
Singh et al. 2018a, 2019b; Zhang et al. 2018) (SIP) has
emerged as one of the key approaches for assessing local
robustness at scale, both as a subroutine and as the core
component of verification algorithms. Over the past 12—24

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

months, progress on SIP efficiency has comparably slowed
down. Yet, it remains of fundamental importance for meth-
ods such as SIP to become more efficient. This is particu-
larly the case for large, deep and convolutional models that
are heavily used in advanced computer vision applications,
including object detection.

The objective of the work reported here is to accelerate
SIP. We specifically develop a dynamic back-substitution
method for running SIP on networks with ReLU activation
functions, which is expected to have a compounding effect
on performance when integrated with existing neural net-
work verifiers. It works by reducing the size of the back-
substitution equations in SIP at a very low cost and with
no precision loss, thereby resulting in faster computation
through the model. This is achieved by combining inter-
mediate results from the more expensive back-substitution-
based SIP method with symbolic bounds for intermedi-
ate layers obtained from the cheaper forward SIP method
(which is typically ran to obtain coarse bounds before em-
ploying more sophisticated methods). The combination of
these intermediate results aims at the identification of stable
ReLU neurons, which can be dropped from the list of nodes
for which we continue running the expensive SIP. This re-
sults in a cost reduction with no precision loss. Since iden-
tifying these stable nodes comes at a cost, we also present
a heuristic for deciding when to apply our method. Specifi-
cally, we make the following contributions.
1. We present the mathematical formulation of DBS-SIP to-

gether with a heuristic governing its use.
2. We evaluate the method on a number of computer vision

models ranging from 92K to 21.8M parameters.
The results obtained show that while the method provides

little to no gains on small models, in the case of large models
such as ResNet18 and ResNet34 the method leads to up to a
40% gain compared to the present state-of-the-art. This leads
to a considerable increase in the number of queries that can
be resolved via SIP through the acceleration of bounding in
Branch-and-Bound (BaB) schemes.

Related Work. Algorithms for Neural Network Verifi-
cation can be divided into complete and incomplete ap-
proaches. Complete verifiers are guaranteed to provide a
definite answer to the verification problem, but are compu-
tationally expensive and may not to scale to large networks.

The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

27383



Incomplete methods are based on relaxations of the verifi-
cation problem to achieve better efficacy. In doing so, they
sacrifice completeness, may produce spurious counterexam-
ples and possibly fail to verify properties for large networks
because of exploding overapproximation errors.

Complete methods are usually based on SMT (Ehlers
2017; Katz et al. 2017, 2019) or MILP. While standard
MILP solvers were used in early approaches (Lomuscio
and Maganti 2017; Cheng, Nührenberg, and Ruess 2017;
Kouvaros and Lomuscio 2018; Tjeng, Xiao, and Tedrake
2019; Anderson et al. 2020), speedups were later achieved
through customised branching strategies (Bunel et al. 2018;
Botoeva et al. 2020; Kouvaros and Lomuscio 2021; Singh
et al. 2019c). Incomplete methods make use of Semidefinite
Programming (SDP) (Raghunathan, Steinhardt, and Liang
2018; Fazlyab, Morari, and Pappas 2020; Batten et al. 2021;
Lan, Zheng, and Lomuscio 2022, 2023; Lan, Brueckner, and
Lomuscio 2023). Interval Bound Propagation (IBP) (Gowal
et al. 2019) or Symbolic Interval Propagation (SIP) (Wang
et al. 2018a,b; Singh et al. 2018b) can often be rendered
complete by combining them with a branching strategy.

Symbolic Interval Propagation has been thoroughly ex-
plored and is extensively used in the context of the for-
mal verification of neural networks. The method propagates
symbolic bounding equations from the input layer of the
network to the output layer. A number of improvements
of the original SIP algorithm have been introduced. Back-
substitution, for example, performs propagation in a reverse
manner from the last to the first layer of the network which
yields tighter approximations (Zhang et al. 2018; Singh et al.
2019b). The present work improves the back-substitution al-
gorithm without incurring any precision loss by dynamically
inferring the stability of ReLU nodes. This can significantly
reduce the computational cost by reducing the number of
nodes for which back-substitution needs to be executed.

The tightness of the ReLU relaxations required for the
SIP process can be improved by considering multiple neu-
rons simultaneously (Singh et al. 2019a) or by explicitly
optimising the slopes of the employed bounding functions.
Some approaches realise this optimisation via gradient de-
scent (Xu et al. 2021) and others through the utilisation of
MILP solvers (Hashemi, Kouvaros, and Lomuscio 2021).
Whereas these methods aim at tightening the bounds for the
output of the network, the method here proposed achieves a
faster computation of the same bounds.

Back-substitution forms an integral part of many com-
plete verifiers. These combine SIP with BaB schemes and
put forward a number of heuristics for the acceleration of
verification through the improvement of the branching de-
cisions that are made (Bunel et al. 2018; Palma et al. 2021;
Henriksen and Lomuscio 2021). The verifiers employ fur-
ther optimisations, including the Lagrangian relaxations of
ReLU split constraints generated during BaB (Wang et al.
2021), and the integration of cuts generated by MILP solvers
into the bound propagation process (Zhang et al. 2022).
Complete verifiers can benefit from our method by accel-
erating the back-substitution subroutines.

Note that even verification methods that are not mainly
based on SIP, often still utilise it as a subroutine. For ex-

ample, SMT- and MILP-based methods frequently use SIP
to calculate the bounds necessary for ReLU encodings or
for other pre-processing purposes (Katz et al. 2019; Kou-
varos and Lomuscio 2021). SIP is also employed in a va-
riety of methods for the verification of geometric proper-
ties (Balunovic et al. 2019; Batten et al. 2024), and for
the abstraction-based robust training of neural networks
(Mirman, Gehr, and Vechev 2018; Henriksen and Lomus-
cio 2023). For any of these methods which employ back-
substitution, our novel method can lead to a substantial
speed-up in the pre-processing step.

2 Background
In this section we recall neural networks, neural network
verification, and symbolic interval propagation.

Feed-forward neural networks. A feed-forward neural
network (FFNN) is a vector-valued function f(x0) : Rs0 →
RsL that composes a sequence of L ≥ 1 layers f0 : Rs0 →
Rs0 , f1 : Rs0 → Rs1 , . . . , fL : RsL−1 → RsL . We de-
note by xi the output of each layer fi. Every element of xi

is often called a neuron. Layer f0 implements the identity
function, i.e., f0(x0) = x0, and it is said to be the input
layer. A layer fi with 1 ≤ i ≤ L is said to be a hidden layer
and fL is said to be the output layer. Every (non-input) layer
implements for input xi−1 either (i) an affine transformation
fi(xi−1) = Wixi−1+bi, for a weight matrix Wi ∈ Rsi×si−1

and a bias vector bi ∈ Rsi , or (ii) a ReLU activation func-
tion fi(xi−1) = ReLU(xi−1) = max(xi−1, 0), where the
maximum function is applied element-wise. Note that for
ease of presentation we separate affine transformations from
the ReLU activation function and consider each as a differ-
ent layer, as opposed to their standard treatment whereby
their composition defines a layer. We hereafter we consider
classification networks, which classify a given input as be-
longing to a certain class c ∈ {1, . . . , sL}, which is given by
c = argmax(f(x0)).

Verification problem. Given a FFNN, the verification
problem is to answer whether its output falls within a lin-
early definable set (i.e., a set that can be described using
a finite set of affine constraints) of outputs for every input
within a linearly definable set of inputs.
Definition 1. Verification problem. Given a FFNN f , a lin-
early definable set of inputs X ⊂ Rs0 and a linearly de-
finable set of outputs Y ⊂ RsL , the verification problem
concerns establishing whether ∀x0 ∈ X : f(x0) ∈ Y .

We write (f,X ,Y) to denote a verification problem. A
widely studied instantiation of the problem is the adversar-
ial robustness problem, whereby the robustness of neural
networks to adversarial examples is assessed (Huang et al.
2017; Anderson et al. 2019; Dvijotham et al. 2018; Bas-
tani et al. 2016; Wang et al. 2018a; Katz et al. 2017). Ad-
versarial examples are semantically equivalent inputs that,
while differing in only imperceptible perturbations, they
are classified differently by a network in question. For in-
stance, the robustness of neural networks with respect to
an input x0 and white noise perturbations can be checked
by setting X = {x′

0 | x0 − ϵ ≤ x′
0 ≤ x0 + ϵ} and Y =

27384



Layer: 0 1 2 3 4 5 6

ReLU

[−1, 1]

[−1, 1]

1

1

1

−1

1

1

1

−1

1

−1

1

−1

Figure 1: A neural network with six layers. The input neu-
rons are constrained within the range [−1, 1]. The weights
on the edges represent the weight matrices for the affine lay-
ers (layers 1 and 3) which are assumed to have zero bias.

{y | y = f(x′
0), x

′
0 ∈ X , ∀i ̸= c : y(i) < y(c)}, where c is

the class of x0 and ϵ > 0 is the perturbation radius. Ad-
versarial robustness for photometric transformations, such
as brightness, contrast and bias fields (Kouvaros et al. 2023;
Henriksen et al. 2021), can be defined in terms of white noise
perturbations by prepending to the network in question rep-
resentations of the transformations as affine layers. We thus
hereafter focus our exposition on the adversarial robustness
problem with respect to white noise perturbations.

Symbolic Interval Propagation (SIP). SIP is a popular
incomplete framework for solving the adversarial robustness
problem. SIP methods typically form the backbone of com-
plete verification frameworks, whether these are based on
MILP (Kouvaros and Lomuscio 2021; Singh et al. 2019c)
or branch-and-bound schemes (Palma et al. 2021; Wang
et al. 2021; Henriksen and Lomuscio 2021). The meth-
ods propagate linearly definable bounds through the net-
work on a layer-by-layer basis, thereby computing bounds
for the output of each of the layers. As detailed below,
the bounds for the output layer can often be used to solve
the verification problem. The methods include Forward SIP
(FSIP) (Wang et al. 2018a) and back-substitution-based SIP
(BS-SIP) (Singh et al. 2019b; Zhang et al. 2018). BS-SIP
derives tighter bounds than FSIP but at the expense of in-
creased computational cost. In the remainder of this section
we outline FSIP. In the next section, we describe and extend
BS-SIP towards improved computational eficiency.

FSIP associates a variable vector v0 for the input to the
network and constructs the following for each layer fi:

• Linear symbolic equations FLi = CFLi v0 +cFLi , where
CFLi ∈ Rsi×s0 and cFLi ∈ Rsi , expressing lower
bounds for the output of the layer. In other words, for
every x′

0 ∈ X , we have that fi(fi−1(. . . f1(x
′
0) . . .)) ≥

CFLi
x′
0+cFLi

. Analogous equations FU i = CFUi
v0 +

cFUi
for the upper bounds are also derived.

• Concrete (i.e., numeric) lower and upper bounds fl i and
fu i for the output of the layer.

Given an adversarial robustness problem (f,X ,Y), we
define in the following the symbolic and concrete bounds
for the layers in f , as derived by FSIP.

Initialisation. The bounds for the input to the network are
instantiated as prescribed by the verification problem:

FL0 = FU 0 = Is0 v0 , fl0 = x0 − ϵ, fu0 = x0 + ϵ,

where Is0 is the identity matrix of size s0. Having obtained
the symbolic bounds FLi = CFLi

v0 + cFLi
and FU i =

CFUi
v0+cFUi

for the i-th layer, we now show the derivation
of (i) the concrete bounds for the layer, (ii) the symbolic
bounds of the subsequent layer. The concrete bounds for the
layer are computed by instantiating the input variables v0
with the concrete input bounds fl0 and fu0 :

fl i = max(CFLi
, 0 )fl0 +min(CFLi

, 0 )fu0 + cFLi
,

fu i = max(CFLi
, 0 )fu0 +min(CFLi

, 0 )fl0 + cFUi
.

Affine transformation layer. The symbolic bounds for an
affine transformation layer fi+1 are given by

FLi+1 = max(Wi+1 , 0 )FLi +min(Wi+1 , 0 )FU i + bi+1 ,

FU i+1 = max(Wi+1 , 0 )FU i +min(Wi+1 , 0 )FLi + bi+1 .

Example 1. Consider the network from Figure 1. We com-
pute the lower symbolic bounds for layer 1:

FL1 = max(W1, 0)FL0 +min(W1 , 0 )FU 0

=

[
1 1
1 0

]
Is0v0 +

[
0 0
0 −1

]
Is0v0 =

[
1 1
1 −1

]
v0.

Similarly we can derive that FU 1 = FL1 . The lower con-
crete bounds are derived from FL1 as follows

fl1 =

[
1 1
1 0

] [
−1
−1

]
+

[
0 0
0 −1

] [
1
1

]
=

[
−2
−2

]
.

The concrete upper bounds can similarly be computed from
FU 1 to obtain fu1 = [2 2]

T .

ReLU layer. The symbolic bounds for a ReLU layer fi+1

are obtained by linearly approximating the ReLU function:

FLi+1 = Diag(λi+1 )FLi ,

FU i+1 = Diag(αi)FU i − αi ⊙ fl i + ReLU(fl i),

where αi = (ReLU(fu i)− ReLU(fl i))⊘ (fu i − fl i), ⊙ and
⊘ denote Hadamard product and division, and λi+1 ∈ Rsi+1

is such that λi+1(k) = 1 if the k-th ReLU neuron is stable,
i.e., it is either strictly active (fl i(k) ≥ 0 ) or strictly inac-
tive (fu i(k) ≤ 0 ), and λi+1(k) ∈ [0, 1] if the k-th ReLU
neuron is unstable, i.e., fl i(k) < 0 and fu i(k) > 0 . The
vector λi+1 expresses the relaxation slopes for the unstable
ReLU neurons which are typically optimised via gradient
descent (Xu et al. 2021). Figure 2 graphically depicts the
linear relaxation of a ReLU neuron.
Example 2. Consider again the network from Figure 1. The
symbolic bounds for layer 2 are

FL2 = 0, for λ2 = [0 0]
T
, and

FU 2 =

[
0.5 0
0 0.5

]
FU 1 −

[
0.5
0.5

]
⊙

[
−2
−2

]
+

[
0
0

]
=

[
0.5 0.5
0.5 −0.5

]
v0 +

[
1
1

]
.

27385



x

ReLU(x)

l
u

Figure 2: Linear relaxation of the ReLU function
ReLU(x) = max(x, 0).

These are used to compute the symbolic bounds for layer 3:

FL3 =

[
0 0

−0.5 0.5

]
v0 +

[
0
−1

]
,FU 3 =

[
1 0
0.5 0.5

]
v0 +

[
2
1

]
,

which in turn give the concrete bounds fl3 = [0 −2]
T

and fu3 = [3 2]
T for layer 3. This implies that the first

ReLU neuron of layer 4 is stable, so only the second ReLU
is relaxed for layer 4:

FL4 = 0, FU 4 =

[
1 0

0.25 0.25

]
v0 +

[
2
1.5

]
,

where we used λ4 = [1 0]
T , and from where we obtain

fl4 = [0 0]
T , fu4 = [3 2]

T .

We conclude this section by noting that the derived con-
crete bounds flL and fuL for the output of the network can
be used to conclude the satisfaction of the adversarial ro-
bustness property whenever the lower bound flL(c) of the
neuron for the class c of the input is greater than the upper
bounds of the neurons for all other classes.

3 Dynamic Back-substitution-based SIP
We present Dynamic Back-substitution-based SIP (DBS-
SIP), a novel extension of back-substitution-based SIP (BS-
SIP) that exhibits improved efficiency without incurring any
precision loss. The novel elements of DBS-SIP consist in the
dynamic concretisation of the symbolic bounds towards re-
moving redundant computations that impact neither the cor-
rectness nor the precision of the procedure.

We begin by associating a vector of variables vi with
the output xi of each layer fi. Similarly to FSIP, DBS-
SIP iteratively computes linear symbolic equations BLi,0 =
CBLi,0

v0 + cBLi,0
and BU i,0 = CBU i,0

v0 + cBU i,0
for

the lower and upper bounds of the output of each layer
fi, which can be concretised to obtain the concrete lower
and upper bounds bl i and bu i . The key difference is that
whereas FSIP computes the symbolic bounds for a layer
by applying the operation the layer implements to the sym-
bolic bounds from the previous layer, DBS-SIP expresses
the bounds for a layer as symbolic equations over variables
for the outputs of the previous layer. These variables are
back-substituted with equations from the previous layers un-
til the equations refer only to variables for the input to the
network. This back-substitution process aims at accounting

for inter-layer dependencies, thereby facilitating the deriva-
tion of tighter bounds, albeit with increased computational
cost (Singh et al. 2019b; Zhang et al. 2018). In contrast
to previous work in back-substitution-based SIP, DBS-SIP
uses the network’s ReLU activation patterns to cut down
the computational cost of the back-substitution step. This
is implemented via the fast-propagation step discussed be-
low. While activation patterns have long been used in lin-
ear programming- and SDP-based relaxations, as well as
mixed integer linear programming formulations, to simplify
the verification problem (Singh et al. 2019b; Botoeva et al.
2020; Weng et al. 2018; Batten et al. 2021), this is, to the best
of our knowledge, the first time that they are used towards
improving the efficacy of symbolic interval propagation.

DBS-SIP only computes input bounds for the unstable
ReLU neurons in the hidden layers since no precision gains
are achievable for stable neurons. These bounds are used to
derive the linear relaxations of the neurons. While traversing
the network backwards to the first layer as part of the back-
substitution process, the method may identify additional sta-
ble ReLU neurons during the computations executed for
each layer. The remaining back-substitution steps required
to reach the first layer do not need to be run for any newly
stabilised neurons, thereby reducing the computational cost.
Having derived all ReLU relaxations, thus built a linear de-
scription of the network, the method finally computes the
bounds for the output layer using back-substitution.

We now give a formal description of the method. We
fix an affine transformation layer fi and use it to discuss
the computation of the lower bounds of fi — the compu-
tation of the upper bounds can be analogously described.
DBS-SIP assumes that the symbolic bounds from FSIP have
been pre-computed. In the following, we write BLi,j =
CBLi,j

vj + cBLi,j
to express the lower symbolic bounds of

layer fi over variables for the output of layer fj . DBS-SIP
starts with expressing the bounds of fi as symbolic equa-
tions over the variables vi−1 for the output of the previous
layer: BLi,i−1 = Wivi−1 + bi .

Example 3. We use the network from Figure 1 to exemplify
DBS-SIP. We compute the lower symbolic bounds of layer 5.

The bounds are initialised as BL5 ,4 =

[
1 1
−1 −1

]
v4 .

Following the initialisation of the symbolic bounds
BLi,i−1 , DBS-SIP substitutes the variables vi−1 in BLi,i−1

with the symbolic equations BLi−1 ,i−2 of layer fi−1 over
the variables for the output of layer fi−2, and so on, until
the symbolic bounds BLi,0 are computed. Having obtained
the symbolic bounds BLi,j for fi over the variables vj for
the output of the j-th layer, we now show the derivation of
the symbolic bounds BLi,j−1 of fi over the variables vj−1

for the output of the (j − 1)-th layer. This involves a fast-
propagation step and a back-substitution step.

Fast-propagation. Towards reducing the computational
cost of back-substituting BLi,j , DBS-SIP fast-propagates
BLi,j to the input layer using the FSIP symbolic bounds FLj

and FU j already computed for fj :

∆i,j = max(CBLi,j
, 0)FLj +min(CBLi,j

, 0 )FU j + cBLi,j
.

27386



It then instantiates ∆i,j with the input bounds to derive con-
crete bounds δi,j for fi. These bounds are generally tighter
than the concrete bounds generated by FSIP, but typically
looser than the bounds obtained by DBS-SIP. This is be-
cause the back-substitution process has been partially ap-
plied down to layer fj , thereby capturing inter-layer depen-
dencies between the layers fj , . . . , fi, which are ommitted
by FSIP, but accounted for by BS-SIP. DBS-SIP uses these
bounds of intermediate precision to reduce the number of
symbolic equations that are back-substituted from layer fj
to earlier layers. It removes in particular every k-th equation
for which we have that δi,j(k) ≥ 0. This condition implies
stability for the k-th ReLU neuron of layer fi+1, thus the
neuron can be precisely described linearly, hence the bounds
for its input need not to be computed. The reduced symbolic
bounds, denoted BLi,j , equal BLi,j = CBLi,j

vj + cBLi,i
=[

CBLi,j
(k, :) | δi,j(k) < 0

]
vj +

[
cBLi,j

(k) | δi,j(k) < 0
]
.

Example 4. We fast-propagate the symbolic bounds BL5 ,4
from the running example:

∆5,4 = max(CBL5,4 , 0)FL4 +min(CBL5,4 , 0 )FU 4

=

[
1 1
0 0

]
0+

[
0 0
−1 −1

]([
1 0

0.25 0.25

]
v0 +

[
2
1.5

])
=

[
0 0

−1.25 −0.25

]
v0 +

[
0

−3.5

]
.

The concretisation of ∆5,4 using the input bounds gives
δ5,4 = [0 −5]

T . This implies stability for the first ReLU
neuron of layer 6, so the symbolic bounds BL5 ,4 are re-
duced to BL5,4 = [−1 −1] v4.

Back-substitution. Following the reduction BLi,j of the
symbolic bounds BLi,j , DBS-SIP substitutes the vari-
ables vj in BLi,j with the symbolic lower and up-
per bounds BLj ,j−1 and BU j ,j−1 to derive the sym-
bolic bounds BLi,j−1 of layer fi over the variables vj−1

for the output of layer fj−1. We have that BLi,j−1 =
max(CBLi,j

, 0 )BLj ,j−1+min(CBLi,j
, 0 )BU j ,j−1+cBLi,j

,
where BLj ,j−1 is given for affine and ReLU layers as:
• Affine layer. BLj ,j−1 = BU j ,j−1 = Wj vj−1 + bj .
• ReLU layer. BLj ,j−1 = Diag(λj )vj−1 , and BU j ,j−1 =
Diag(αj−1 )vj−1−αj−1⊙bl j−1+ReLU(bl j−1 ), where
αj−1 =

ReLU(bu j−1 )−ReLU(bl j−1 )
bu j−1−bl j−1

.

Example 5. We back-substitute the reduced lower symbolic
bounds BL5,4 = [−1 −1] v4 from the running example

to derive BL5 ,3 . We have that BL4 ,3 =

[
1 0
0 0

]
v3 and

BU 4 ,3 =

[
1 0
0 0.5

]
v3 +

[
0
1

]
, where we have used that

λ4 = [1 0]
T , bl3 = [0 −2]

T and bu3 = [3 2]
T .

Therefore, BL5 ,3 = [0 0]BL4 ,3 + [−1 −1]BU 4 ,3 =
[−1 −0.5] v3 − 1 .

Overhead and governance heuristic. While DBS-SIP re-
duces the size of the symbolic bounds to be back-substituted,
it also induces the overhead of the application of the fast-
propagation step, which substitutes the variables of DBS-

SIP with the FSIP symbolic bounds. To reduce this over-
head we develop a heuristic that compares, at each back-
substitution step, the expected computational savings result-
ing from the reduction of the symbolic bounds and the ex-
pected computational cost of fast-propagation.

To estimate the computational savings from the reduction
of the symbolic bounds BLi,j , we concretise BLi,j using
the concrete bounds bl j and buj of the j-th layer to obtain
γ = max(BLi,j , 0 )bl j +min(BLi,j , 0 )bu j . The number of
ReLU neurons that can be proven stable using these bounds
equals η =

∑
1γ≥0. This number expresses a lower bound

for the number of ReLU neurons that can be shown stable
using fast-propagation. The savings of reducing the sym-
bolic bounds are estimated therefore as the cost of back-
substituting η equations layer-by-layer down to the input
layer. This equals O(ηsjsj−1 + . . . + ηs1s0), where each
term ηsksk−1 refers to the cost of multiplying the coeffi-
cient matrix of the symbolic equations of the η neurons over
the variables for the k-th layer (of size η × sk) with the co-
efficient matrix of BLk ,k−1 of size sk × sk−1.

The computational cost of performing fast propagation is
estimated on the other hand as O(sisjs0). This refers to the
cost of multiplying the coefficient matrix of BLi,j of size
si × sj with the coefficient matrix of FLj of size sj × s0.

This estimated cost of the fast-propagation step and esti-
mated savings of the reduction of the symbolic bounds indi-
cate that DBS-SIP is more performant for low-dimensional
inputs, as the next section empirically shows.

4 Evaluation
To evaluate the proposed approach we implement the stan-
dard back-substitution algorithm (Zhang et al. 2018; Singh
et al. 2019b) and the dynamic back-substitution algorithm as
described in the previous section. The implementation is in
Python and uses PyTorch (Paszke et al. 2019) for efficient
vectorised computations and GPU acceleration. The experi-
ments are conducted on one server and one workstation. The
server is running Fedora 35 equipped with an AMD EPYC
7453 28-Core Processor and 512GB of RAM. The worksta-
tion is running Ubuntu 22 equipped with an AMD Ryzen
Threadripper 3970X 32-Core Processor, 256 GB RAM, and
a NVIDIA GeForce RTX 3090 GPU.

We compare the performance of the algorithms on two
benchmarks from the Verification of Neural Networks Com-
petitions (VNNComp): “cifar biasfield” from the 2022 com-
petition (Müller et al. 2022) and “TinyYOLO” from the 2023
competition (Brix et al. 2023). The “cifar biasfield” bench-
mark consists of one fully convolutional network with 8
layers, 363k parameters and 45k nodes. The “TinyYOLO“
benchmark consists of a downsized version of the YOLO
model with 14 layers and 92k parameters. We further run
experiments with the pre-trained ResNet18 (11.7m param-
eters) and ResNet34 (21.8m parameters) from PyTorch’s
TorchVision package version 0.16.0. For the TorchVision
and TinyYOLO models we considered brightness per-
turbations of the inputs (corresponding to X in Defini-
tion 1) (Kouvaros et al. 2023). For the cifar biasfield bench-
mark, we used 3-order multiplicative bias fields as described
in (Henriksen et al. 2021). For the ResNet benchmarks, we

27387



Model Perturbation Type ϵ #verified #undecided tbase tnhdyn ∆nhdyn (%) tdyn ∆dyn (%)

TinyYOLO brightness

10−3 72 0 14682 - - 14027 -4.46
10−4 72 0 3016 - - 1470 -51.25
10−5 72 0 426 - - 418 -1.87
10−6 72 0 138 - - 137 -0.72

cifar biasfield bias fields

6 · 10−2† 0 72 1708 1843 7.85 1883 10.20
10−2 0 72 1114 1227 10.18 1316 18.19
10−3 72 0 329 337 2.46 277 -15.98
10−4 72 0 100 100 0.87 95 -4.15
10−5 72 0 89 89 0.06 89 0

ResNet18 brightness

10−2 0 50 34374 35854 4.30 33572 -2.33
10−3 14 36 23347 22975 -1.59 19559 -16.22
10−4 39 11 16056 14578 -9.21 9976 -37.87
10−5 38 12 11643 11106 -4.61 7152 -38.57

ResNet34 brightness

10−2 0 50 103177 104327 1.11 101702 -1.43
10−3 0 50 74598 74733 0.18 70811 -5.08
10−4 50 0 52851 52923 0.14 40243 -23.85
10−5 50 0 46238 46827 1.27 29866 -35.41

Table 1: Experimental Evaluation on incomplete verification (single back-substitution passes). tbase, tnhdyn and tdyn denote the
runtime of standard back-substitution, dynamic back-substitution without our heuristic and dynamic back-substitution with our
heuristic, respectively. Negative ∆ values indicate lower runtimes for dynamic back-substitution compared to standard back-
substitution. Dagger (†): Original perturbation size used in VNNComp 2022.

used 50 randomly generated verification properties. For the
other benchmarks, we used the properties provided as part
of the official VNNComp repository.

Experimental results on back-substitution passes. The
results obtained from running back-substitution passes are
presented in Table 1. We show the runtime of standard back-
substitution as tbase and that of DBS-SIP as tdyn. We com-
pute the percentage difference in runtime as ∆ =

tdyn−tbase

tbase
.

For small perturbation sizes, DBS-SIP yields significant run-
time reductions. The results indicate that the method sta-
bilises neurons at intermediate layers and, thus, simplifies
the bounding matrices. Consequentially, the computational
costs are reduced, which explains the improved runtimes.
For instance, in the case of TinyYOLO, the runtime is halved
for ϵ = 10−4. For the ResNet models, we observe simi-
lar speed-ups of up to 40% for small epsilons. However, for
large perturbation sizes, we observe smaller gains or even
increased runtimes (see, for instance, cifar biasfield with
ϵ ≥ 10−2). This is expected since large perturbation sizes
may result in wider bounds, hence reducing the number of
stable ReLUs, thus potentially making the overhead of DBS-
SIP to outweigh the benefit of ReLU stabilisation.

We note that the relative benefit of DBS-SIP also de-
creases for the smallest perturbation sizes for the TinyYOLO
and cifar biasfield models. This may be a consequence of
the forward pass already identifying most ReLUs as stable
due to tighter bounds, thus eliminating the need for back-
substitution passes altogether. In contrast, for the ResNets,
we observe that the gains are still significant for the small-
est perturbation sizes as the networks are deeper and larger.
Their size generally leads to looser bounds, resulting in

fewer stable neurons being identified by the forward pass.

Ablation study. Table 1 presents the results of an abla-
tion study for the evaluation of the heuristic introduced in
Section 3 that governs the application of DBS-SIP. The
study was conducted on a small (cifar biasfield), medium
(ResNet18), and large (ResNet34) model. We compare the
performance of DBS-SIP with the heuristic enabled against
a version that attempts to stabilise all unstable nodes at every
back-substitution step. We report the runtime of DBS-SIP
without the heuristic as tnhdyn alongside the previously in-
troduced tbase and tdyn. For the comparison, we compute the
percentage runtime difference achieved by DBS-SIP with-
out the heuristic and visualise the results in Figure 3. In line
with our discussion in Section 3, we find that the heuristic
is essential for DBS-SIP to provide any gains. Without the
heuristic, we observe no gains for the cifar biasfield bench-
marks, significantly smaller gains for the ResNet18, and no
gains for the ResNet34. The results clearly demonstrate the
added benefit of the proposed heuristic.

Experimental results on complete verification runs. To
assess the performance of our method in a complete veri-
fication setting, we extended the verifier Venus (Kouvaros
and Lomuscio 2021) with our implementation of DBS-SIP.
We only run our experiments for a medium (cifar biasfield)
and large (ResNet18) model since the incomplete verifier
evaluated before already verifies all samples for the smaller
TinyYOLO model. The results of the experiments are pre-
sented in Table 2 where we find that the performance gains
reach 16.50% for ϵ = 10−3 for the medium-sized ci-
far biasfield and up to 27% for the large ResNet18. These
gains appear to be lower than those for incomplete verifica-

27388



10−5 10−4 10−3 10−2
−20

0

20

40

ϵ

t

(a) ResNet18

10−5 10−4 10−3 10−2
−20

0

20

40

ϵ

t

(b) ResNet34

10−5 10−4 10−3 10−2
−20

0

20

40

ϵ

t

(c) cifar biasfield

Runtime Reduction dyn (%) Runtime Reduction nhdyn (%)

Figure 3: Ablation Study. Positive values correspond to a reduction in runtime which is computed as Reduction =
tbase−tdyn

tbase
.

Model Perturbation ϵ ver/to tbase tdyn ∆dyn

cifar biasfield bias fields

10−2 68/4 34275 34516 0.70
10−3 72/0 333 278 -16.50
10−4 72/0 99 96 -3.17
10−5 72/0 88 89 1.40

ResNet18 brightness

10−2 0/50 68458 69354 -0.58
10−3 34/16 28140 26807 -3.19
10−4 39/11 9974 8044 -7.11
10−5† 38/7 9243 6915 -27.29

Table 2: Experimental evaluation on complete verification
via the Venus verifier. tbase and tdyn denote the runtime of
standard and dynamic back-substitution with our heuristic,
respectively. “ver” and “to” stand for the number of veri-
fied/timed out queries. Dagger (†): Five cases in which split-
ting ran out of memory are excluded from the results.

tion because of the increased number of timeouts encoun-
tered which increase the runtime for verification with and
without DBS-SIP and reduce the relative difference between
the two. When these timeouts are not accounted for, the per-
formance gains for DBS-SIP are of similar magnitude to the
case of incomplete verification.

Similarly to incomplete verification, we notice a slight in-
crease in runtime in cases where no neurons can be stabilised
because of large perturbation sizes (e.g. for cifar biasfield
with ϵ = 10−2) or small perturbation sizes where most
ReLUs are already stabilised with standard SIP (e.g. ci-
far biasfield with ϵ = 10−5). The increase in runtime for
these cases is the result of the overhead of computing the
dynamic back-substitution heuristic.

Summary. The empirical evaluation shows that DBS-SIP
can significantly reduce the runtime of back-substitution.
In our ablation study we further show that heuristically de-
termining good candidates for ReLU stabilisation is key to
achieving gains.

5 Conclusions
Bound-propagation-based methods have had a significant
impact towards scaling neural network verification to large
models. The methods remain the core components for both
incomplete and complete verification frameworks. Improv-
ing their efficiency is therefore an important step to validate
even deeper and larger models, such those operating in the
computer vision domain.

In this paper we made a contribution towards this di-
rection. We introduced dynamic back-substitution, a novel
bound-propagation-based method that reduces the compu-
tations required by state-of-the-art approaches while not in-
curring any precision loss on the output bounds. The method
was empirically shown to often require less time than the
state-of-the-art to resolve verification queries. As it relies
on dynamic inference of ReLU stability at every step of the
back-substitution process, the method naturally targets per-
formance improvements for low-dimensional specifications.
This is confirmed by our experimental results.

To control its effective usage, we introduced a heuristic
based on the concretisation of the symbolic bounds at each
back-substitution step. While the overhead of computing the
heuristic results in little to no gains for small models, the
heuristic significantly reduces the required runtime in many
cases of practical interest and results in up to 40% perfor-
mance gains when compared to the state-of-the-art on large
models such as ResNet34.

Beside the results reported on VENUS, we expect the ad-
vances here proposed on dynamic back-substitution to im-
prove the performance of other neural network verifiers that
employ a back-substitution routine.

Acknowledgements
Benedikt Brückner acknowledges partial support from
UKRI via the UKRI Centre for Doctoral Training in Safe
and Trusted Artificial Intelligence (EP/S023356/1). Alessio
Lomuscio acknowledges partial support from the Royal
Academy of Engineering via a Chair in Emerging Technolo-
gies.

27389



References
Anderson, G.; Pailoor, S.; Dillig, I.; and Chaudhuri, S. 2019.
Optimization and Abstraction: A Synergistic Approach for
Analyzing Neural Network Robustness. In 40th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI19), 731–744. ACM Press.
Anderson, R.; Huchette, J.; Ma, W.; Tjandraatmadja, C.; and
Vielma, J. 2020. Strong mixed-integer programming formu-
lations for trained neural networks. In Integer Programming
and Combinatorial Optimization, volume 11480 of LNCS,
27–42. Springer.
Balunovic, M.; Baader, M.; Singh, G.; Gehr, T.; and Vechev,
M. 2019. Certifying Geometric Robustness of Neural Net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS19), 15313–15323. Curran Associates, Inc.
Bastani, O.; Ioannou, Y.; Lampropoulos, L.; Vytiniotis, D.;
Nori, A.; and Criminisi, A. 2016. Measuring Neural Net
Robustness with Constraints. In Proceedings of the 30th In-
ternational Conference on Neural Information Processing
Systems (NIPS16), 2613–2621.
Batten, B.; Kouvaros, P.; Lomuscio, A.; and Zheng, Y.
2021. Efficient Neural Network Verification via Layer-based
Semidefinite Relaxations and Linear Cuts. In Proceedings of
the 30th International Joint Conference on Artificial Intelli-
gence (IJCAI21), 2184–2190. ijcai.org.
Batten, B.; Zheng, Y.; Palma, A. D.; Kouvaros, P.; and Lo-
muscio, A. 2024. Verification of Geometric Robustness of
Neural Networks via Piecewise Linear Approximation and
Lipschitz Optimisation. In Proceedings of the 27th Euro-
pean Conference on Artificial Intelligence (ECAI24), 2362–
2369.
Botoeva, E.; Kouvaros, P.; Kronqvist, J.; Lomuscio, A.; and
Misener, R. 2020. Efficient Verification of Neural Networks
via Dependency Analysis. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI20), 3291–3299.
AAAI Press.
Brix, C.; Bak, S.; Liu, C.; and Johnson, T. T. 2023. The
Fourth International Verification of Neural Networks Com-
petition (VNN-COMP 2023): Summary and Results. arXiv
preprint arXiv:2312.16760.
Bunel, R.; Turkaslan, I.; Torr, P.; Kohli, P.; and Mudigonda,
P. 2018. A Unified View of Piecewise Linear Neural
Network Verification. In Proceedings of the 31st An-
nual Conference on Neural Information Processing Systems
(NeurIPS18), 4790–4799. Curran Associates, Inc.
Cheng, C.; Nührenberg, G.; and Ruess, H. 2017. Maximum
resilience of artificial neural networks. In International Sym-
posium on Automated Technology for Verification and Anal-
ysis (ATVA17), 251–268. Springer.
Dvijotham, K.; Stanforth, R.; Gowal, S.; Mann, T.; and
Kohli, P. 2018. A dual approach to scalable verification of
deep networks. arXiv preprint arXiv:1803.06567.
Ehlers, R. 2017. Formal Verification of Piece-Wise Linear
Feed-Forward Neural Networks. In Proceedings of the 15th
International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA17), volume 10482 of Lecture
Notes in Computer Science, 269–286. Springer.

Fazlyab, M.; Morari, M.; and Pappas, G. J. 2020. Safety
Verification and Robustness Analysis of Neural Networks
via Quadratic Constraints and Semidefinite Programming.
IEEE Transactions on Automatic Control.
Gowal, S.; Dvijotham, K.; Stanforth, R.; Bunel, R.; Qin,
C.; Uesato, J.; Arandjelovic, R.; Mann, T.; and Kohli, P.
2019. On the Effectiveness of Interval Bound Propaga-
tion for Training Verifiably Robust Models. arXiv preprint
arXiv:1810.12715.
Hashemi, V.; Kouvaros, P.; and Lomuscio, A. 2021. OSIP:
Tightened Bound Propagation for the Verification of ReLU
Neural Networks. In Proceedings of the 19th International
Conference on Software Engineering and Formal Methods
(SEFM21), 463–480. IEEE Computer Society.
Henriksen, P.; Hammernik, K.; Rueckert, D.; and Lomuscio,
A. 2021. Bias Field Robustness Verification of Large Neural
Image Classifiers. In Proceedings of the 32nd British Ma-
chine Vision Conference (BMVC21). BMVA Press.
Henriksen, P.; and Lomuscio, A. 2021. DEEPSPLIT: an Ef-
ficient Splitting Method for Neural Network Verification via
Indirect Effect Analysis. In Proceedings of the 30th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI21),
2549–2555. ijcai.org.
Henriksen, P.; and Lomuscio, A. 2023. Robust Training of
Neural Networks against Bias Field Perturbations. In Pro-
ceedings of the 37th AAAI Conference on Artificial Intelli-
gence (AAAI23), 14865–14873. AAAI Press.
Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017.
Safety Verification of Deep Neural Networks. In Pro-
ceedings of the 29th International Conference on Computer
Aided Verification (CAV17), volume 10426 of Lecture Notes
in Computer Science, 3–29. Springer.
Katz, G.; Barrett, C.; Dill, D.; Julian, K.; and Kochenderfer,
M. 2017. Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks. In Proceedings of the 29th Interna-
tional Conference on Computer Aided Verification (CAV17),
volume 10426 of Lecture Notes in Computer Science, 97–
117. Springer.
Katz, G.; Huang, D.; Ibeling, D.; Julian, K.; Lazarus, C.;
Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.; Dill,
D.; Kochenderfer, M.; and Barrett, C. 2019. The Marabou
Framework for Verification and Analysis of Deep Neural
Networks. In Proceedings of the 31st International Con-
ference on Computer Aided Verification (CAV19), 443–452.
Kouvaros, P.; Kyono, T.; Leofante, F.; Lomuscio, A.;
Margineantu, D.; Osipychev, D.; and Zheng, Y. 2021. For-
mal Analysis of Neural Network-Based Systems in the Air-
craft Domain. In Proceedings of the 24th International Sym-
posium on Formal Methods (FM21), volume 13047 of Lec-
ture Notes in Computer Science, 730–740. Springer.
Kouvaros, P.; Leofante, F.; Chung, C.; Edwards, B.;
Margineantu, D.; and Lomuscio, A. 2023. Verification of Se-
mantic Key Point Detection for Aircraft Pose Estimation. In
Proceedings of the 20th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR23),
757–762. ijcai.org.

27390



Kouvaros, P.; and Lomuscio, A. 2018. Formal Verifica-
tion of CNN-based Perception Systems. arXiv preprint
arXiv:1811.11373.
Kouvaros, P.; and Lomuscio, A. 2021. Towards Scal-
able Complete Verification of ReLU Neural Networks via
Dependency-based Branching. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJ-
CAI21), 2643–2650. ijcai.org.
Lan, J.; Brueckner, B.; and Lomuscio, A. 2023. A
Semidefinite Relaxation Based Branch-and-Bound Method
for Tight Neural Network Verification. In Proceedings of the
37th AAAI Conference on Artificial Intelligence (AAAI23),
14946–14954. AAAI Press.
Lan, J.; Zheng, Y.; and Lomuscio, A. 2022. Tight Neural
Network Verification via Semidefinite Relaxations and Lin-
ear Reformulations. In Proceedings of the 36th AAAI Con-
ference on Artificial Intelligence (AAAI22). AAAI Press.
Lan, J.; Zheng, Y.; and Lomuscio, A. 2023. Iteratively En-
hanced Semidefinite Relaxations for Efficient Neural Net-
work Verification. In Proceedings of the 37th AAAI Con-
ference on Artificial Intelligence (AAAI23), 14937–14945.
AAAI Press.
Lomuscio, A.; and Maganti, L. 2017. An approach to reach-
ability analysis for feed-forward ReLU neural networks.
arXiv preprint 1706.07351.
Mirman, M.; Gehr, T.; and Vechev, M. 2018. Differen-
tiable Abstract Interpretation for Provably Robust Neural
Networks. In Proceedings of the 35th International Confer-
ence on Machine Learning (ICML18), 3575–3583. PMLR.
Müller, M.; Brix, C.; Bak, S.; Liu, C.; and Johnson, T.
2022. The Third International Verification of Neural Net-
works Competition (VNN-COMP 2022): Summary and Re-
sults. arXiv preprint arXiv:2212.10376.
Palma, A. D.; Bunel, R.; Desmaison, A.; Dvijotham, K.;
Kohli, P.; Torr, P.; and Kumar, M. P. 2021. Improved branch
and bound for neural network verification via lagrangian de-
composition. arXiv preprint arXiv:2104.06718.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Proceedings of the
33rd Conference on Neural Information Processing Systems
(NeurIPS19), 8024–8035. Curran Associates, Inc.
Raghunathan, A.; Steinhardt, J.; and Liang, P. S. 2018.
Semidefinite relaxations for certifying robustness to ad-
versarial examples. In Proceedings of the 32th Interna-
tional Conference on Neural Information Processing Sys-
tems (NIPS18), 10900–10910.
Singh, G.; Ganvir, R.; Püschel, M.; and Vechev, M. 2019a.
Beyond the single neuron convex barrier for neural network
certification. In Advances in Neural Information Process-
ing Systems (NeurIPS19), 15098–15109. Curran Associates,
Inc.
Singh, G.; Gehr, T.; Mirman, M.; Püschel, M.; and Vechev,
M. 2018a. Fast and effective robustness certification.

In Advances in Neural Information Processing Systems
(NeurIPS18), 10802–10813.
Singh, G.; Gehr, T.; Mirman, M.; Püschel, M.; and Vechev,
M. 2018b. Fast and Effective Robustness Certification.
In Advances in Neural Information Processing Systems
(NeurIPS18), 10802–10813. Curran Associates, Inc.
Singh, G.; Gehr, T.; Püschel, M.; and Vechev, M. 2019b. An
abstract domain for certifying neural networks. Proceedings
of the ACM on Programming Languages, 3(POPL): 41.
Singh, G.; Gehr, T.; Püschel, M.; and Vechev, M. 2019c.
Boosting Robustness Certification of Neural Networks.
In International Conference on Learning Representations
(ICLR19). OpenReview.net.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing proper-
ties of neural networks. In Proceedings of the 2nd Interna-
tional Conference on Learning Representations (ICLR14).
Tjeng, V.; Xiao, K.; and Tedrake, R. 2019. Evaluating Ro-
bustness of Neural Networks with Mixed Integer Program-
ming. In Proceedings of the 7th International Conference
on Learning Representations (ICLR19).
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018a. Efficient Formal Safety Analysis of Neural Net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS18), 6367–6377. Curran Associates, Inc.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018b. Formal Security Analysis of Neural Networks us-
ing Symbolic Intervals. In Proceedings of the 27th USENIX
Security Symposium (USENIX18).
Wang, S.; Zhang, H.; Xu, K.; Lin, X.; Jana, S.; Hsieh, C.;
and Kolter, J. 2021. Beta-crown: Efficient bound propa-
gation with per-neuron split constraints for complete and
incomplete neural network verification. arXiv preprint
arXiv:2103.06624.
Weng, T.; Zhang, H.; Chen, H.; Song, Z.; Hsieh, C.; Boning,
D.; Dhillon, I.; and Daniel, L. 2018. Towards Fast Compu-
tation of Certified Robustness for ReLU Networks. In Pro-
ceedings of the 35th International Conference on Machine
Learning (ICML18).
Xu, K.; Zhang, H.; Wang, S.; Wang, Y.; Jana, S.; Lin, X.; and
Hsieh, C.-J. 2021. Fast and Complete: Enabling Complete
Neural Network Verification with Rapid and Massively Par-
allel Incomplete Verifiers. In Proceedings of the 9th Interna-
tional Conference on Learning Representations (ICLR21).
OpenReview.net.
Zhang, H.; Wang, S.; Xu, K.; Li, L.; Li, B.; Jana, S.; Hsieh,
C.-J.; and Kolter, J. Z. 2022. General Cutting Planes for
Bound-Propagation-Based Neural Network Verification. In
Proceedings of the 36th Conference on Neural Information
Processing Systems (NeurIPS22), 1656–1670. Curran Asso-
ciates, Inc.
Zhang, H.; Weng, T.; Chen, P.; Hsieh, C.; and Daniel, L.
2018. Efficient Neural Network Robustness Certification
with General Activation Functions. In Proceedings of the
31st Annual Conference on Neural Information Processing
Systems 2018 (NeurIPS18), 4944–4953.

27391


