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Abstract
We study the problem of verifying multi-agent
systems composed of arbitrarily many neural-
symbolic agents. We introduce a novel pa-
rameterised model, where the parameter denotes
the number of agents in the system, each ho-
mogeneously constructed from an agent template
equipped with a neural network-based perception
unit and a traditionally programmed action selec-
tion mechanism. We define the verification and
emergence identification problems for these mod-
els against a bounded fragment of CTL. We put for-
ward an abstraction methodology that enables us to
recast both problems to the problem of checking
Neural Interpreted Systems with a bounded num-
ber of agents. We present an implementation and
discuss experimental results obtained on a social
dilemma game based on guarding.

1 Introduction
Safety concerns stemming from the increasing development
of Multi-agent Systems (MAS) have been put under math-
ematical scrutiny by automated methods that ascertain their
correct behaviour. Verification methods based on SAT and
BDDs [Kacprzak et al., 2004; Raimondi and Lomuscio,
2005] have resulted in push-button engines such as Verics,
MCK and MCMAS [Gammie and van der Meyden, 2004;
Kacprzak et al., 2008; Lomuscio et al., 2017]. In conjunction
with increasingly sophisticated state-space reduction tech-
niques, such as predicate abstraction [Lomuscio and Michal-
iszyn, 2015] and partial order reductions [Jamroga et al.,
2020], the verifiers have been able to scale to the analysis
of systems with very large state spaces.

While the different methods target the provision of effec-
tive solutions to different types of analyses, e.g., fast search
for counterexamples [Penczek and Lomuscio, 2003] as op-
posed to fast correctness proofs [Ball and Kupferman, 2006],
and for different classes of MAS, e.g., MAS defined over
infinite-state as opposed to finite-state variables [Lomuscio
and Michaliszyn, 2015], all methods make two fundamen-
tal assumptions. The first is that the MAS under analysis is
composed of a known number of agents specified at design
time. The second is that the agents composing the MAS are

specified using traditional programming languages. The ap-
proaches cannot therefore be used to verify important classes
of MAS, where either the systems have arbitrarily many par-
ticipants or the agents are endowed with machine learning
components. The former class of systems includes open sys-
tems, where agents can join and leave the system at runtime,
and applications designed irrespective of the number of par-
ticipants, such as robot swarms and scenarios in the Internet
of Things. The latter class comprises forthcoming neural-
symbolic applications such as autonomous vehicles.

More recent methods have addressed the verification of
systems with an unbounded number of constituents [Kou-
varos and Lomuscio, 2016b; Kouvaros and Lomuscio,
2016a]. While the various verification methods focus on
different communication primitives for the agents, most of
them rely on abstractions whereby the unbounded verification
problem is reduced to analysing a finite state-space. These
abstractions formed the backbone of various formal reason-
ers such as those targeting fault-tolerance [Kouvaros et al.,
2018] and data-aware systems [Belardinelli et al., 2017].

In a different line of work, verification methods for MAS
comprising agents with neural components were put for-
ward [Akintunde et al., 2020b; Akintunde et al., 2022]. To
deal with the real-valued operational domain of the neural
network models, the methods recast verification queries for
bounded properties into Mixed-Integer-Linear-Programming.

While these two lines of work independently tackle un-
bounded and neural-symbolic MAS, none of the underlying
methods can be used for analysis of systems that are both un-
bounded and neural-symbolic. In this paper we overcome this
limitation. Specifically, we introduce Parameterised Neural-
symbOlic interpreted Systems (PANoS), a formal model for
modelling unbounded neural-symbolic MAS. We develop an
abstraction methodology for PANoS whereby we derive novel
sound and complete procedures for the verification and emer-
gence identification problems with respect to bounded univer-
sal and existential CTL formulae. We use these procedures to
analyse a social dilemma scenario.

The rest of the paper is organised as follows. After dis-
cussing related work below, we present PANoS in Section 2,
followed by the development of the verification and emer-
gence identification procedures in Section 3, which we eval-
uate in Section 4 on a social dilemma scenario. We conclude
in Section 5.



Related Work. The contribution is related to the two
lines of work discussed above, namely parameterised ver-
ification and verification for neural-symbolic MAS. Previ-
ous models in parameterised verification targeted either ar-
bitrarily many agents operating in fixed environments [Kou-
varos and Lomuscio, 2016b; Kouvaros and Lomuscio, 2016a;
Felli et al., 2020] or a fixed number of agents living in en-
vironments of arbitrary size [Aminof et al., 2016]. None
of these models include neural components. Systems com-
prising homogeneous agents were also analysed within the
framework of Alternating-time Temporal Logic but in a fixed,
non-parameterised and purely symbolic setting [Pedersen and
Dyrkolbotn, 2013].

Existing verification methods for MAS with neural compo-
nents [Akintunde et al., 2020b; Akintunde et al., 2022] take
as input systems with a known number of agents. The main
theoretical finding of this work is that verification for an un-
bounded number of agents can be reduced to the verification
of (abstract) systems with a bounded number of agents.

2 Parameterised Neural-symbolic Interpreted
Systems

Interpreted systems are a standard semantics for describing
multi-agent systems [Fagin et al., 1995b]. They provide a
natural setup to interpret specifications in a variety of lan-
guages, including temporal-epistemic logic and alternating-
time temporal logic [Fagin et al., 1995a; Lomuscio and Rai-
mondi, 2006]. Parameterised interpreted systems is a para-
metric extension of interpreted systems put forward to reason
about unbounded multi-agent systems [Kouvaros and Lomus-
cio, 2015]. The parameter in a system of this kind denotes
the number of agents composing the system, each homoge-
neously constructed from an agent template.

In this section we extend parameterised interpreted sys-
tems to Parameterised Neural-symbOlic interpreted Systems
(PANoS), where the template for the agents is not purely sym-
bolic but (i) comprises a perception mechanism that is imple-
mented via neural networks, (ii) it is coupled with a symbolic
action mechanism. This neural-symbolic treatment of the
agents follows the Neural Interpreted Systems (NIS) model
from [Akintunde et al., 2020b]. Differently from PANoS
however, NIS are limited to standard non-parametric systems
with a pre-defined number of agents.

A PANoS consists of the descriptions of an agent template,
from which an unbounded number of concrete agents may
be constructed, and of an environment in which the agents
operate. The agent template is defined as follows.

Definition 1 (Agent template). An agent template is a tuple
t = (Lt, ιt, obst,Act t, prot t, tr t), where:

• Lt = Prv t × Per t is a nonempty (possibly infinite) set of
template local states. Each local state is a pair (prv t, per t)
of a private state prv t ∈ Prv t ⊆ Rmprv and a percept
per t ∈ Per t ⊆ Rmper that encodes a perception of the
environment by the agent.

• ιt ∈ Lt is the unique initial template state.
• obst : Lt × Le → Per t is an observation function that

maps pairs of template local states Lt ⊆ Rmprv+mper

and environment states Le ⊆ Rme (see below) to percepts
Per t ⊆ Rmper . We assume, without loss of generality to
the parameterised verification results present in the Sec-
ton 3, that the observation function is implemented via a
neural network f : Rmprv+mper+me → Rmper .

• Act t is a nonempty and finite set of actions.
• prot t : Lt → 2Actt \ {∅} is a local protocol function that

returns the set of actions available at a given local state.
• tr t : Lt×Act t×2Actt ×Acte → Prv t is a local transition

function that determines the next private state for an agent
instantiated from the template given its current local state,
its action, the set of actions performed by all the agents
and the action of the environment.

Example 1. We consider the example of a guarding game,
an instance of a collective risk dilemma [Milinski et al.,
2008]. In this game there is a colony of agents that needs
to be guarded. Guarding duty costs a guard some health Gr

(Gr < 0) and resting improves an agent’s health by Rr

(Rr > 0). If no one is guarding, then all agents in the
colony lose some health Ur (Ur < 0). The maximum value
of an agent’s health is Mh. If an agent does not have any
health left, then it expires. We formalise the agent template
t = (Lt, ιt, obst,Act t, prot t, tr t) in this game as follows.
• Lt = {(h, per ) | h ∈ {0, . . . ,Mh}, per ∈ {Gp, Rp, Ep},

where h is the health of the agent and percepts Gp, Rp and
Ep indicate what the agent is willing to do (see below).

• ιt = (|Gr|+1, Gp), i.e., at the start each agent has enough
health to be able to guard at least once without expiring.

• Act t = {Ga, Ra, Ea}, where Ga, Ra and Ea stand for
Guarding, Resting and Expired actions, respectively.

• The observation function is assumed to be given as a neural
network. It returns whether the agent volunteers to guard,
Gp, can only rest, Rp, or is expired, Ep.

• prot t(h, per ) =

{ {Ga, Ra}, if per = Gp

{Ra}, if per = Rp

{Ea}, if per = Ep

If the percept isGp, then the agent can both guard and rest.
If the percept is Rp or Ep, the only available actions are
resting and the dummy action Ea, respectively.

• The local transition function updates the health according
to the rules. Formally, for P ∈ {Gp, Rp}:
tr t((h, P ), Ga, A) = max(h+Gr, 0)
tr t((h, P ), Ra, A) = min(h+Rr,Mh) if Ga ∈ A
tr t((h, P ), Ra, A) = max(h+ Ur, 0) if Ga /∈ A
tr t((h,Es), Ea, A) = h.

The environment has a similar description to an agent tem-
plate but it (i) does not include a perception mechanism,
(ii) may include an infinite set of initial local states.
Definition 2 (Environment). An environment is a tuple e =
(Le, Ie,Acte, prote, tre), where Le ⊆ Rme is a nonempty
set of local states, Ie ⊆ Le is a nonempty set of initial
local states, Acte is a nonempty and finite set of actions,
prote : Le → 2Acte \ {∅} is a local protocol function, and
tre : Le ×Acte × 2Actt → Le is a local transition function.

The agent template and the environment define the main
formal structure we will be using in this paper.



Definition 3. A Parameterised Neural Interpreted System
(PANoS) is a tuple S = (t, e, ℓ), where t is an agent tem-
plate, e is an environment, and ℓ : AP → 2Lt is a labelling
function on the agent template states for a set AP of atomic
propositions.

Example 2. Consider the agent template t in Example 1. As-
sume a dummy environment e where Le = Ie = {0} and
Acte = {0} are singleton states and actions, prote(0) = {0}
and tre(0, 0, A) = 0 for all A ∈ 2Actt . Suppose AP =
{a, d}, where a stands for alive and d for dead, and ℓ is a la-
belling function defined as ℓ(a) = {(h, S) | h > 0 and S ̸=
Ep} and ℓ(d) = Lt \ ℓ(a). Then S = (t, e, ℓ) is a PANoS for
the guarding example.

A PANoS S gives a parametric description of an un-
bounded collection of concrete NIS. In particular, for any
value n ≥ 1 of the parameter, the concrete system S(n)

composes n copies 1, . . . , n of the agent template with the
environment e. We write Ag(n) for the set {1, . . . , n} of
concrete agents instantiated from t. A global state in S(n)

describes the system at a particular instant of time. It is a
tuple q = (l1, . . . , ln, le) of local states for all the agents
and the environment in S(n). For a global state q, we
write lprv i(q), lper i(q) and ls i(q) to denote the private
part prv i and the perception part per i of the local state
ls i(q) = (prv i , per i) of agent i in q. The set G(n) of all
possible global states is G(n) = L1 × · · · × Ln × Le. A
joint action α = (α1, . . . , αn, αe) in S(n) is a tuple of lo-
cal actions for all the agents and the environment. For a
joint action α, we write lai(α) to denote the local action
of agent i in α. The set ACT (n) of all joint actions is
ACT (n) = Act1 × · · · × Actn × Acte. We now formally
define the concrete NIS generated from PANoS.

Definition 4 (Concrete Neural Interpreted System). Given a
PANoS S = (t, e, ℓ) and n ≥ 1, a concrete neural interpreted
system is a tuple S(n) =

(
{1, . . . , n, e} , I(n), ℓ(n)

)
, where

I(n) = {(ι1, . . . , ιn, ιe) | ιe ∈ Ie} is the set of initial global
states and ℓ(n) : AP × {1 , . . . ,n} → 2G(n)

is the concrete
labelling function satisfying q ∈ ℓ(n)(p, i) iff ls i(q) ∈ ℓi(p).

So the atomic propositions in a concrete system are in-
dexed by each of the concrete agents: (p, i) holds in a global
state if the agent i is at a local state labelled with p by the
template labelling function. This will enable us to construct
specifications independently of the size of the concrete sys-
tem on which they are evaluated.

Given the current global state (l1, . . . , ln, le), where li =

(prv i, per i), for i ∈ Ag(n), of the agents and the environ-
ment, the operational cycle of the agents is described as fol-
lows. First, every agent i ∈ Ag(n) ∪ {e} selects an ac-
tion αi that is permitted by its protocol, i.e., αi ∈ prot i(li).
Then, the agents synchronously perform the joint action α =
(α1, . . . , αn, αe). Following the execution of the joint ac-
tion, each agent i ∈ Ag(n) updates the private component of
its local state as per its local transition function to prv ′

i =
tr i(li, αi , α→{}, αe), where α→{} = {αj | j ∈ {1 , . . . ,n}}
is the projection of the joint action for the agents onto a set.

This generates an intermediate local state l′i = (prv ′
i, per i)

for each of the agents. Similarly, the environment updates its
local state to l′e. Finally, every agent i ∈ Ag(n) observes the
update on its local state and the update on the local state of
the environment via its neural perception module obsi, thus
generating a percept per ′i = obsi(l

′
i, l

′
e), with which it up-

dates its perception part thereby obtaining a new local state
l′′i = (prv ′

i, per
′
i).

So, differently from the standard treatment of interpreted
systems, the transition function of a concrete agent in PANoS
does not depend on the joint action performed in the system,
but it depends on the local action performed by the agent and
on the set of actions performed by all of the agents and the
environment. Thus, the identities of the agents are abstracted
away in a joint action, thereby reflecting the unbounded na-
ture of PANoS. In other words, whereas a concrete agent
can observe which actions were performed in the system at a
given time, it cannot observe which agent or how many agents
performed each action.

We now formally define the temporal evolution of a con-
crete system S(n).
Definition 5 (Global transition function). The global transi-
tion function tr (n) : G(n) × ACT (n) → G(n) of a concrete
system S(n) satisfies tr (n)(q , α) = q ′ iff the following hold:

• lae(α) ∈ prote(lse(q)), tre(lse(q), lae(q), α→{}) =
lse(q

′); i.e., the environment’s action is protocol compli-
ant and its local state is updated as per its local transition
function and the actions that were performed in the round.

• For all i ∈ {1, . . . , n}, we have that lai(α) ∈
prot i(ls i(q)), tr i(ls i(q), lai(α), α→{}, lae(α)) =
lprv i(q

′), and obsi((lprv i(q
′), lper i(q)), lse(q

′)) =
lper i(q

′); i.e., the agent’s action is protocol compliant,
the private part of its local state is updated as per its local
transition function and the actions performed at the round,
and the perception part of its local state is updated as per
its observation function.

Each concrete system is associated with a temporal model
that we will use to interpret our specification language.

Definition 6 (Model). Given a concrete NIS S(n), its (in-
duced) model MS(n) is a tuple (G(n),ACT (n), T (n), ℓ(n)),
where G(n) is the set of global states, ACT (n) is the set of
joint actions, T (n) is the global transition relation defined as
(q, α, q′) ∈ T (n) iff tr (n)(q , α) = q ′, and ℓ(n) is the labelling
function as in Definition 4.

A path in a model MS(n) is an infinite sequence of global
states and joint actions q0α0q1α1 . . . s.t. (qi, αi, qi+1) ∈
T (n) for all i ≥ 0. For a path ρ, we write ρ(i) for the i-th
global state in ρ. Given a global state q in MS(n) we write
Π(q) for the set of all paths originating from q.
Example 3. Consider a concrete neural interpreted system
S(2) =

(
{1, 2, e} , I(2), ℓ(2)

)
for the agent template in Exam-

ple 1 and PANoS in Example 2, where ℓ(2) is defined from ℓ,
I(2) = {(ι1, ι2, 0)} and ιi = (|Gp|+1, Gp). A model MS(2)

of S(2) is depicted in Figure 1, where for brevity we omit the
environment local state le.



(2, Gp), (2, Gp)

a, a

(0, Ep), (0, Ep)

d, d

(1, Rp), (1, Rp)

a, a

(3, Gp), (1, Rp)

a, a

(1, Rp), (3, Gp)

a, a

(1, Rp), (0, Ep)

a, d

(0, Ep), (1, Rp)

d, a

Ga, Ga
Ga, Ra
Ra, Ga
Ra, Ra

Ra, Ea
Ea, Ra
Ea, Ea

Figure 1: The model MS(2) for the guarding example for Gr = −1,
Rr = 1, and Ur = −2.

We express specifications for PANoS in an indexed and
bounded variant of Computation Tree Logic (CTL), hence-
forth bICTL. The logic (i) introduces indexed atomic proposi-
tions that are quantified over the agents of the concrete system
on which the formula in question is evaluated, and (ii) per-
mits only the construction of formulae whose evaluation can
be realised on paths of bounded lengths. The former extends
CTL by allowing the formulation of properties irrespective of
the concrete system on which they are evaluated. The latter
restricts CTL to bounded formulae [Akintunde et al., 2020a].
Definition 7. Given a set AP of atomic propositions and a
set VAR of variables, the bICTL formulae are defined by the
following BNF:

φ ::= (p, v) | φ ∨ φ | φ ∧ φ | EXkφ | AXkφ | ∀v : ϕ,
where p ∈ AP , v ∈ VAR and k ≥ 1.

The formula AXkφ is read as “for all paths, φ holds at the
k-th step”, and EXkφ as “there exists a path where φ holds
at the k-th step”. We note that bounded until A(φUkψ) can
be inductively abbreviated as in [Akintunde et al., 2020a].

The logic bCTL [Akintunde et al., 2022] is the logic ob-
tained from the above BNF, but replacing the first clause with
p and removing the last clause. The restriction of the logic to
bounded properties follows the undecidability of verification
for the unbounded case [Akintunde et al., 2022]. While the
parameterised verification results presented in the next sec-
tion still hold should negation be allowed in our syntax, verifi-
cation methods for concrete models, including VENMAS used
in the present contribution, do not support negation, since its
inclusion may hinder the completeness of verification [Akin-
tunde et al., 2022].

A bICTL formula is said to be a sentence if every variable
appearing in the formula is in the scope of either a univer-
sal or an existential agent quantifier. Hereafter we consider
only indexed bICTL sentences of the form ∀v1 · · · ∀vm : φ, or,
shortly, ∀v1,...,vmφ, where: (i) vi ∈ VAR for i ∈ {1, . . . ,m},
(ii) φ is either universal in that it contains only universal path
quantifiers or existential in that it contains only existential
path quantifiers.

We now define the satisfaction relation for bICTL on the
temporal models associated with the concrete systems.
Definition 8 (Satisfaction). Given a model MS(n) , a global
state q in MS(n) , and a bICTL sentence ∀v1,...,vmφ with
m ≤ n, the satisfaction of φ at q, denoted (MS(n) , q) |= φ,
or simply q |= φ when MS(n) is clear from the context, is
defined as:

q |= (p, i) iff q ∈ ℓ(n)((p, i)), for p ∈ AP and i ∈ Ag(n);

q |= φ ∨ ψ iff q |= φ or q |= ψ;

q |= φ ∧ ψ iff q |= φ and q |= ψ;

q |= EXkφ iff there is ρ ∈ Π(q) such that ρ(k) |= φ;

q |= AXkφ iff for all ρ ∈ Π(q) we have that ρ(k) |= φ;

q |= ∀v1,...,vmφ iff for all h : {v1, . . . , vm} → {1, . . . , n},
we have that q |= φ[v1 7→ h(v1), . . . vm 7→ h(vm)].

By the definition above, a bICTL sentence is evaluated only
up to a bounded number of time steps. Given a bICTL sen-
tence, we call this number of steps the temporal depth of the
sentence, which we formally define below.

Definition 9. The temporal depth td(φ) of a bICTL sentence
∀v1,...,vmφ is inductively defined as follows:

td(φ) = 0 if φ = (p, i);
td(φ) = max(td(ψ1 ), td(ψ2 )) if φ = ψ1 ∨ ψ2;
td(φ) = max(td(ψ1 ), td(ψ2 )) if φ = ψ1 ∧ ψ2;
td(φ) = k + td(ψ1 ) if φ = EXkψ1;
td(φ) = k + td(ψ1 ) if φ = AXkψ1;
td(φ) = td(ψ1 ) if φ = ∀v1,...,vmψ1.

A sentence ∀v1,...,vmφ is said to be true in MS(n) , denoted
MS(n) |= ∀v1,...,vmφ, if (MS(n) , q) |= ∀v1,...,vmφ for all
q ∈ I(n). The sentence is said to be true in S, denoted
S |= ∀v1,...,vmφ, if it is true in every model induced by every
concrete system instantiated from S with at least m agents,
i.e., MS(n) |= ∀v1,...,vmφ for all n ≥ m. The parameterised
verification problem is to check whether this holds.

Definition 10 (Parameterised verification problem). Given
a PANoS S and a bICTL sentence ∀v1,...,vmφ, determine
whether S |= ∀v1,...,vmφ.

While solutions to the parameterised verification problem
can be used to establish whether a property holds for any
number of agents, some properties, often called emergent
properties [Bonabeau et al., 1999], are expected to be realised
only after certain conditions on the number of agents are met.
For instance, foraging protocols for robot swarms, require a
certain number of agents to be present for the underlying for-
mations to be established. A natural number th ∈ N is an
emergence thershold for a PANoS S and a bICTL sentence
∀v1,...,vmφ if we have that MS(n) |= ∀v1,...,vmφ for every
n ≥ th . The emergence identification problem is to compute
an emergence threshold.

Definition 11 (Emergence identification problem). Given a
PANoS S and a bICTL sentence ∀v1,...,vmφ, compute an
emergence threshold th ∈ {0,m,m+ 1, . . .} for S and
bICTL. (If th = 0, then S admits no threshold for
∀v1,...,vmφ.)

3 Parameterised Verification Procedure
In this section we put forward procedures for solv-
ing the parameterised verification and emergence iden-
tification problems introduced in the previous section.
For ease of presentation, we fix a PANoS S =
(t, e, ℓ), where t = (Lt, ιt, obst,Act t, prot t, tr t), e =



(Le, Ie,Acte, prote, tre), and a bICTL sentence ∀v1,...,vmφ
throughout the section.

The verification procedure that we introduce recasts the pa-
rameterised verification and emergence identification prob-
lems for S and ∀v1,...,vmφ to a number of (standard) verifica-
tion problems for abstract and concrete NIS against the bCTL
formula φ[v1 7→ 1, . . . , vm 7→ m], which for brevity we de-
note as φ[m]. We show that the satisfaction status of φ[m]
on these systems determines the satisfaction and existence of
emergence thresholds for ∀v1,...,vmφ on S. This enables us to
use previously established methodologies for the verification
of NIS against bCTL [Akintunde et al., 2020b] to analyse
PANoS. We start by reducing the problem of checking the
bICTL sentence in question to that of checking φ[m].
Lemma 1 (Symmetry reduction). S |= ∀v1,...,vmφ iff S |=
φ[m].

We next construct the zero-one abstraction of the systems
generated from S. The zero-one abstraction is a NIS compris-
ing a zero-one agent, which is an abstraction for arbitrarily
many concrete agents, m conrete agents, whose local states
determine the satisfaction status of the atomic propositions
in φ[m] (see Definition 4), and the environment. In other
words, the zero-one agent in this abstract NIS encodes how
an arbitrary number of agents may interfere with the tempo-
ral evolution of the concrete agents 1, . . . ,m. It is defined in
the following.
Definition 12 (Zero-one agent). Given an agent template t =
(Lt, ιt, obst,Act t, prot t, tr t) over a set Per t of percepts and
a set Prv t of private states, its associated zero-one agent is
a tuple zo = (Lzo, ιzo, obszo,Actzo, protzo, trzo) over sets
Perzo = 2Pert \ {∅} and Prvzo = 2Prvt \ {∅} of percepts
and private states, where:
• Lzo = 2Lt \ {∅} is the set of abstract states. An abstract

state represents the projection of global states in systems
of any size onto a set.

• ιzo = {ιt} is the unique initial abstract state.
• obszo : Lzo × Le → Perzo is the abstract observation

function. It maps pairs of abstract and environment states
to sets of percepts, where each set includes the percepts
that would be collectively generated in a global state rep-
resented by the abstract state. Formally, the observation
function satisfies obszo(lzo, le) = perzo if:
– for all lt ∈ lzo we have that obst(lt, le) ∈ perzo;
– for all per t ∈ perzo there is lt ∈ lzo s.t. obst(lt, le) =
per t.

• Actzo = 2Lt×Actt \ {∅} is the set of abstract actions. As
with abstract states, an abstract action represents the pro-
jection of joint actions, paired with the local states at which
they are performed, of arbitrarily many agents onto a set.

• protzo : Lzo → 2Actzo \ {∅} is the abstract protocol. The
protocol prescribes the sets of template actions that can
be collectively performed at a global state represented by
a given abstract state. It is defined as protzo(lzo) =

×lt

{
(lt, A) | A ∈ 2prott(lt) \ {∅}

}
.

• trzo : Lzo × Actzo × 2Actt × Acte → Prvzo is the ab-
stract transition function. The function determines the set

of private states that the agents would collectively tran-
sition to in any global state represented by a given ab-
stract state and after they have performed a joint action
represented by a given abstract action. It is such that
trzo(lzo, αzo, A, αe) = prvzo if the following hold:
– αzo ∈ protzo(lzo);
– for all (lt, αt) ∈ αzo, we have tr t(lt, αt, A, αe) ∈
prvzo;

– for all prv t ∈ prvzo, there is (lt, αt) ∈ αzo such that
tr t(lt, αt, A, αe) = prv t.

The abstract NIS comprises the zero-one agent, m con-
crete agents, and the environment. Formally, it is a tu-
ple S(m)

ab =
(
{1, . . . ,m, zo, e} , I(m)

ab , ℓ
(m)
ab

)
, where I(m)

ab =

{(ι1, . . . , ιm, ιab, ιe) | ιe ∈ Ie} is the set of initial global
states and ℓ(m)

ab : AP × {1 , . . . ,m} → 2G
(m)
ab is the abstract

labelling function satisfying q ∈ ℓ
(m)
ab (p, i) iff ls i(q) ∈ ℓi(p).

The abstract global transition function is defined as the con-
crete one but accounting for the zero-one agent:

Definition 13. The abstract global transition function tr
(m)
ab :

G
(m)
ab × ACT

(m)
ab → G

(m)
ab of the abstract system S(m)

ab sat-
isfies tr (m)

ab (q , α) = q ′ if the following hold:
• lae(α) ∈ prote(lse(q)), tre(lse(q), lae(q), α→{}) =
q ′, where α→{} = {lai(α) | i ∈ {1 , . . . ,m}} ∪
{αt | (lt, αt) ∈ lazo(α) for some lt}.

• For all i ∈ {1, . . . ,m, zo}, we have that lai(α) ∈
prot i(ls i(q)), tr i(ls i(q), lai(α), α→{}, lae(α)) =
lprv i(q

′) and obsi((lprv i(q
′), lper i(q)), lse(q

′)) =
lper i(q

′).
Given the abstract global transition function

we can associate an (abstract) model MS(m)
ab

=(
G

(m)
ab ,ACT

(m)
ab , T

(m)
ab , ℓ

(m)
ab

)
to the abstract NIS in a

similar manner to the concrete case.
We now establish a correspondence between the abstract

model and the concrete models. We show in particular that:
(i) the abstract model simulates every concrete model with
at least m + 1 agents; (ii) there is always a concrete model
with a sufficient number of agents that simulates the abstract
model; (iii) a concrete model always simulates a smaller con-
crete model. A model simulates another model if every be-
haviour exhibited by the latter is also admitted by the former.
As specifications for PANoS are bounded, we consider simu-
lation up to a bounded number of steps as defined below.
Definition 14 (Bounded simulation.). A b-bounded simula-
tion between two models M = (G,ACT ,T , ℓ) and M′ =
(G′,ACT ′,T ′, ℓ′) with sets of initial global states I and I ′
is inductively defined on b ≥ 0 as follows.
• A relation ∼0⊆ G×G′ is 0-bounded simulation if for every
ι ∈ I , there is ι′ ∈ I ′ with (ι, ι′) ∈∼0, and whenever
(q, q′) ∈∼0, we have that q ∈ ℓ(p, i) implies that q′ ∈
ℓ′(p, i).

• A relation ∼b⊆ G×G′ is b-bounded simulation if for every
ι ∈ I , there is ι′ ∈ I ′ with (ι, ι′) ∈∼b, and whenever
(q, q′) ∈∼b, the following hold:



1. (q, q′) ∈∼0.
2. If (q, α, q1) ∈ T for a joint action α ∈ ACT and global

state q1 ∈ G, then there is a joint action α′ ∈ ACT ′

and global state q′1 ∈ G′ such that (q′, α′, q′1) ∈ T ′

and (q1, q′1) ∈∼b−1.
We say that a model M′ simulates a model M up to b time

steps, denoted M ≤b M′, if there is a b-bounded simulation
relation between M and M′. Universal bCTL formulae are
preserved from the simulating model to the simulated model
and existential bCTL formulae are preserved from the simu-
lated model to the simulating model whenever their temporal
depth is at most b.
Theorem 1. Let M and M′ be two models such that M ≤b

M′. Then, the following hold.
1. If M′ |= φ for a universal bCTL formula φ with

td(φ) ≤ b, then M |= φ.
2. If M |= φ for an existential bCTL formula φ with

td(φ) ≤ b, then M′ |= φ.
We can now show the simulation results pertaining to the

abstract and concrete models. We start by showing that
the abstract model simulates every concrete model with at
least m+ 1 agents up to any depth.
Theorem 2. Let n ≥ m + 1 and b ≥ 0. Then, MS(n) ≤b

MS(m)
ab

.

Next, we show that irrespective of the temporal depth of the
specification under analysis there is always a concrete model
that simulates the abstract model up to that depth.
Theorem 3. Given b ≥ 0, there is n ≥ m + 1 such that
MS(m)

ab

≤b MS(n) .

Finally, we show that every concrete model simulates every
smaller concrete model up to any depth.
Theorem 4. Let n ≥ m, n′ > n and b ≥ 0. Then, MS(n) ≤b

MS(n′) .
The above results enable the derivation of procedures for

solving the parameterised verification and emergence iden-
tification problems. In the case of universal formulae, the
emergence identification procedure simply concerns check-
ing the abstract model, and the parameterised verification
procedure additionally involves checking a single concrete
model against the formula in question.
Corollary 1. For a universal bCTL formula φ[m]:
• If MS(m)

ab

|= φ[m], then m + 1 is an emergence threshold
for ∀v1,...,vmφ. Otherwise, there is no emergence threshold
for ∀v1,...,vmφ.

• MS(m)
ab

|= φ[m] and MS(m) |= φ[m] iff S |= ∀v1,...,vmφ.

Theorems 2, 3 and 4, additionally enable the derivation of
procedures for the verification of existential properties.
Corollary 2. If φ[m] is an existential bCTL formula with

temporal depth b and n = mini

(
MS(m)

ab

≤b MS(i)

)
, then:

• If MS(n) |= φ[m], then n is an emergence threshold for
∀v1,...,vmφ. Otherwise, there is no emergence threshold for
∀v1,...,vmφ.

• MS(i) |= ∀v1,...,vmφ, for all i ∈ {m, . . . , n}, iff S |=
∀v1,...,vmφ.

In summary, Corollaries 1 and 2 provide constructive,
sound and complete methodologies for checking universal
and existential bICTL formulae for PANoS. For the case of
universal properties, verification can be conducted by con-
structing and checking the abstract model and the concrete
model with m agents, where m is the number of index vari-
ables present in the specification in question. The specifica-
tion is satisfied by the abstract and concrete models if and
only if the specification is satisfied in general for any num-
ber of agents. The satisfaction of the specification by the ab-
stract model is also connected by biconditional implication
with the existence of an emergence threshold for the specifi-
cation. For the case of existential properties, verification can
be performed by enumerating all concrete models, identify-
ing the smallest one that simulates the abstract model, and
checking all concrete models up to the simulating one. The
specification is satisfied by all these concrete models if and
only if the specification is satisfied in general for any number
of agents. The satisfaction of the specification by the concrete
model that simulates the abstract model is also connected by
biconditional implication with the existence of an emergence
threshold for the specification.

4 Evaluation
In this section we present an evaluation of the parameterised
verification procedures described in Section 3 on the guarding
game presented in Example 1.

The guarding game is an instance of a social dilemma
game, a class of MAS characterised by tension between in-
dividual and collective rationality [Van Lange et al., 2013].
The game simulates the fundamental forces of a collective
risk dilemma (CRD), a type of social dilemma where a guar-
anteed “tragedy of the commons” [Hardin, 1968] is avoided
by personal sacrifice by a population of agents, or brought
on by free riding if all the agents neglect the collective in-
terests [Santos and Pacheco, 2011]. Namely, guarding can
be considered equivalent to cooperation (acting in collective
interest), and resting to defection (acting in selfish interest).

We train a neural observation function using deep Q-
learning, a type of reinforcement learning (RL) algorithm.
During the training, the game was played by 4 agents, and
the parameters were set as Mh = 4, Gr = −2, Rr = 1
and Ur = −3. The rewards were assigned to reflect the ten-
sion between individual and collective interests. All agents
shared the same neural network, and thus were learning to
play against exact copies of themselves. The produced neu-
ral network has two hidden layers of four ReLU activated
neurons, takes as input a single neuron, representing the nor-
malised health points of the agent, and outputs the estimated
Q-values of the two actions ‘rest’ and ‘guard’.

Given the learned neural network, we implemented a tem-
plate agent and a zero-one agent for the guarding game. We
then used Corollaries 1 and 2 to verify whether it is possible
for a colony of agents to survive after a number of time steps.
Specifically, recall from Example 2 that proposition a labels
all states with positive health (“alive”) and proposition d la-



k = 2
(n = 2)

k = 3
(n = 3)

k = 4
(n = 3)

k = 5
(n = 3)

i = 2 0.09s 1.46s 5.49s 61.47s
i = 3 0.13s 0.30s 0.52s 133.28s
i = 4 0.53s 1.19s 2.31s 4.28s
i = 5 1.15s 3.41s 17.74s 95.83s
i = 6 5.09s 17.58s – –

Table 1: Verification times for MS(i) |= φk
E [2] for various k and

i. For each k, we indicate the value of n from Corollary 2. Grey
cells indicate when the property was not satisfied. Dashes indicate a
1 hour timeout.

bels all other states with no health (“dead”). We considered
two specifications (for vi ∈ VAR):

1. The existential property ∀v1,v2φk
E , where φk

E =
EXk((a, v1) ∧ (a, v2)). The property expresses that
there is an evolution where at least 2 agents are alive
after k time steps.

2. The universal property ∀v1,...,vmφk
A, where φk

A =
AXk

∧m
i=1(a, vi). The property expresses that in every

possible evolution at leastm agents are alive after k time
steps, for m ∈ {2, 3}.

We used the VENMAS toolkit [Akintunde et al., 2020b]
for checking the conrete and abstract systems prescribed by
Corollaries 1 and 2. The experiments were performed on a
standard PC running Ubuntu 22.04 with 16GB RAM and pro-
cessor Intel(R) Core i5-4460. We relied on Gurobi v10.0 [Gu
et al., 2016] to solve the mixed integer linear programs gen-
erated by VENMAS.

Let S be the PANoS for the guarding example. For the
existential property, we check whether at least two agents can
stay alive for k time steps (S |= φk

E), and whether there is a
minimal number (an emergence threshold) of agents that can
guarantee that. We vary the temporal depth k from 2 to 5. To
verify whether S |= ∀v1,v2φk

E , we use Corollary 2 and check
whether MS(i) |= φk

E [2] for every i ∈ {2, . . . , n}, where n is
the minimal i such that MS(i) k-bounded simulates MS(2)

ab

.
We have that n = 2 for k = 2, and n = 3 for k ≥ 3.

Table 1 presents the outcomes of the verification queries
MS(i) |= φk

E [2] for i ∈ {2, . . . , 4}. For k = 2, since
MS(2) |= φ2

E [2], we conclude that S |= ∀v1,v2φ2
E . This

of course additionally implies that n = 2 is an emergence
threshold for ∀v1,v2φ2

E . For k ≥ 3, since MS(2) ̸|= φk
E [2], we

conclude that S ̸|= ∀v1,v2φk
E . Still, since MS(3) |= φk

E [2],
we obtain that n = 3 is an emergence threshold for ∀v1,v2φk

E ,
so there need to be at least 3 agents present in the colony
to ensure a temporal evolution whereby the colony is viable.
The verification results for i ∈ {4, 5, 6} reported by the table
(which are not used to reason about parameterised verifica-
tion) demonstrate the increasing computational cost of verify-
ing concrete systems for increasing number of agents, thereby
empirically justifying the need for parameterised verification.

Concerning the universal property, we verified φk
A[m]

against the abstract model MS(m)
ab

for the temporal depths
k ∈ {1, . . . , 6} and m ∈ {2, 3}. The verification times and

m k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

2 0.66s 3.60s – 16.90s 20.59s –
3 1.75s 16.03s – 42.74s 2196.70s –

Table 2: Verification times for MS(m)
ab

|= φk
A[m] for various m and

k. Grey cells indicate when the property was not satisfied. Dashes
indicate a 1 hour timeout.

results can be found in Table 2. We observe that because of
the presence of the zero-one agent, the verification times are
longer than the ones observed in Table 1. We additionally
notice that the property in question is not satisfied even af-
ter 1 time step, which is expected given that there exist paths
where no agent is guarding even when there are volunteers.

In summary, our experimental results confirm the in-
tractability of verification for concrete models as the number
of agents grows, thereby motivating the need for the parame-
terised verification methods that we put forward.

5 Conclusions
Advances in interconnectivity of autonomous services and
machine learning fuel the development of MAS with arbi-
trarily many neural-symbolic components, thereby creating a
pressing need for their verification.

Towards addressing this need, in this paper we put forward
a number of automated procedures for the formal analysis
of parameterised, neural-symbolic MAS. The procedures en-
able conclusions to be drawn on the satisfaction of temporal
properties irrespective of the number of agents composing the
MAS. They can additionally identify emergence thresholds
expressing sufficient conditions on the number agents for a
property to be realised.

The theoretical results have driven the implementation of
a parameterised, neural-symbolic verifier, which we used to
reason about a simple social dilemma game. More generally,
the techniques here developed can be used to analyse prop-
erties of policies learned to deal with real-life challenges that
come in the form of collective risk dilemmas, as well as prop-
erties in swarm scenarios and open systems in general.

In future work we target the development of parameterised
methods for interleaved semantics for neural-symbolic MAS
and strategic properties.
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