
OSIP: Tightened Bound Propagation
for the Verification of ReLU Neural

Networks

Vahid Hashemi1, Panagiotis Kouvaros2(B), and Alessio Lomuscio2

1 Audi AG, Ingolstadt, Germany
2 Imperial College London, London, UK

p.kouvaros@imperial.ac.uk

Abstract. Abstraction-based methods for the verification of ReLU-
based neural networks suffer from rapid degradation in their effectiveness
as the neural network’s depth increases. We propose OSIP, an abstraction
method based on symbolic interval propagation in which the choice of
the ReLU relaxation at each node is determined via optimisation. We
present an implementation of OSIP on top of Venus, a publicly available
toolkit for complete verification of neural networks. In the experiments
reported, OSIP calculated bounds that were tighter than the state-of-
the-art on ReLU networks from the first competition for neural network
verification. As a case study we apply the method for the verification
of VGG16, a deep, high-dimensional, 300,000 node-strong model used
for object classification in autonomous vehicles against local robustness
properties. We demonstrate that OSIP could verify the correctness of the
model against perturbations that are larger than what can be analysed
with the present state-of-the-art.

1 Introduction

Methods based on machine-learning (ML) are increasingly being deployed in AI-
based, safety-critical applications, including autonomous vehicles. Rather than
being directly programmed by software engineers, these modules often take the
form of neural networks (NN) synthesised directly from data. A notable example
of these are the class of ML-based object detectors and classifiers presently used
in autonomous vehicles. These are typically deep (i.e., multi-layered) networks
often comprising hundreds of thousands of neurons that can automatically detect
and classify objects of interest in an image, whether these are vehicles, humans,
fixed and moving obstacles, etc. While the performance of neural classifiers is
high, their error rates are often in the region of 1–2%, hence still too high to be
deployed safely on their own. It is also known that neural models are particularly
fragile against out of sample data, i.e., while the nominal performance may be
high on data with the same statistical distribution of the training set, this may
not be the case with out-of-distribution inputs. To mitigate these problems the
area of verification of neural networks has grown to propose methods to verify
the correctness of classifiers.
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 463–480, 2021.
https://doi.org/10.1007/978-3-030-92124-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_26

464 V. Hashemi et al.

Due to their importance in applications, particular emphasis to date has
been devoted to methods addressing the verification of feed-forward (i.e., non-
recurrent) neural networks based on Rectified-Linear Units (ReLU). A key spec-
ification that is analysed in this context is local robustness. Simply stated, local
robustness refers to whether or not the network alters its output in the presence
of small changes to the input. This can be useful to analyse the network’s stabil-
ity in the presence of input noise, or its susceptibility to adversarial attacks [12].

Related work. Methods in formal verification of ReLU-based neural networks
can be partitioned into complete, or exact, and incomplete, or approximate. Com-
plete methods [2,4,6,9,11,13,17–19,21,21,22,29,31,32] can theoretically solve a
verification query, such as local robustness, both with a positive and a negative
answer. However, they also suffer from scalability issues and may not be able to
resolve queries when the network or the perturbation range is large.

In contrast with this, incomplete methods [3,7,8,10,23,24,26,28,33,34,36,
37,37] rely on various abstraction methods to overapproximate the computation
of a neural network. Because of this overapproximation, incomplete methods
can only certify that a network is compliant against a specification, but not
that it is not. While leading incomplete approaches can solve some verification
problems that cannot be established via complete approaches, they still fall short
of being capable of addressing large models of industrial sizes. This is because
the abstraction methods are often too coarse thereby inhibiting the evaluation
of significant perturbations on the input. This is particularly evident in symbolic
interval propagation (SIP)-based methods [26,28,33–35,37] whereby the ReLU
function is linearly approximated and the bounds for the nodes are computed via
backward passes of variable substitutions through the network. Whilst this often
achieves state-of-the-art scalability, it trades off precision by inducing coarser
overapproximations as compared to other methods.

Contribution. In this paper we aim to make a contribution in this direction.
We propose an incomplete, SIP-based method that improves the precision. Dif-
ferently from related methods, where the relaxation for a ReLU node is heuristi-
cally chosen to induce the minimum local, i.e., at neuron-level, overapproxima-
tion area [26,37] or the minimum local maximum error [32], our method jointly
determines via optimisation the relaxations to be conducted for all the nodes
in a layer, thereby accounting for intra-layer dependencies to improve precision.
Additionally, it provides a simple, yet effective treatment for max-pooling lay-
ers towards further improving precision. This enables solving verification queries
that could not previously be determined by the state-of-the-art. We experimen-
tally evaluate the method proposed by benchmarking on the ReLU networks
from the first competition for neural network verification. Additionally we report
the results obtained when analysing VGG16, an image classifier consisting of over
300,000 nodes. The results show that our method produces tighter bounds and
is able to solve verification queries that cannot be solved by present methods.

The rest of the paper is organised as follows. In Sect. 2 we fix the nota-
tion and present key concepts used throughout the paper. Section 3 reports
OSIP, the SIP method here developed. Section 4 reports details of the resulting

OSIP: A Tight Abstraction Method for NN Verification 465

implementation and reports experimental results against ReLU networks from
the first competition for neural network verification and VGG16. We conclude
in Sect. 5.

2 Preliminaries

Feed-Forward Neural Networks. A feed-forward neural network (FFNN) is
a vector-valued function f : Rs0 → R

sL that composes a sequence of L ≥ 1 layers
f1 : Rs0 → R

s1 , . . . , fL : RsL−1 → R
sL . Each layer f i, i ∈ {1, . . . , L − 1}, is said

to be a hidden layer; the last layer fL of the network is said to be the output
layer. Each element of each layer f i is said to be a neuron, or a node. We use
ni,q to refer to the q-th node of layer i. Each layer f i, i ∈ {1, . . . , L}, implements
one of the following functions for input xi−1:

1. an affine transformation fi(xi−1) = W (i)xi−1+bi, for a weight matrix W (i) ∈
R

ni×ni−1 and a bias vector b ∈ R
ni .

2. a ReLU activation function fi(xi−1) = max(xi−1, 0), where the maximum
function is applied element-wise.

3. a max-pool function which collapses rectangular neighbourhoods of its input
into the maximal value within each neighbourhood.

Note that for ease of presentation we separate affine transformations from the
ReLU activation function, where we consider each as a different layer, as opposed
to their standard treatment whereby their composition defines a layer. Also, we
hereafter assume that the bias vector for all the layers is the zero vector. There
is no technical difficulty to extend the discussion to non-zero bias vectors.

Verification Problem. Given a FFNN, the verification problem is to answer
positively or negatively as to whether the output of the network for every input
within a linearly definable set of inputs1 is contained within a linearly definable
set of outputs. Formally, we have:

Definition 1. Verification problem. Given a FFNN f , a linearly definable set of
inputs X ⊂ R

s0 and a linearly definable set of outputs Y ⊂ R
sL , the verification

problem is to establish whether

∀x ∈ X : f(x) ∈ Y.

One of the most well-studied instantiations of the verification problem is the
local adversarial robustness problem. The problem concerns answering whether
all images within a norm-ball of a given input image are classified equivalently
by the network f [1,2,8,15,17,31]. Formally, the local adversarial robustness
problem is derived from the verification problem by setting

X = {x′ | x − ε ≤ x′ ≤ x + ε}
Y = {y | ∀i �= c : f(x′)i < f(x′)c} ,

1 A linearly definable set is a set that can be expressed as a finite set of affine con-
straints over real-valued variables.

466 V. Hashemi et al.

Algorithm 1. Verification via over-approximation.
1: procedure Verify(f ,X ,Y)
2: Input: network f , set of inputs X , set of outputs Y
3: Output: yes/unknown
4: compute R̂ such that R̂ ⊇ {f (x) | x ∈ X}
5: if R̂ ⊆ Y then
6: return yes

7: else
8: return unknown

for a given image x with class label c and perturbation radius ε ≥ 0. In this
paper, we focus on verification problems whereby the set of inputs X is defined
by a lower and an upper bound for each element of the input x0 to the network,
i.e., X = {x0 | li ≤ x0,i ≤ ui}, where li, ui ∈ R.

3 OSIP: Tightened Bound Propagation

In this section we present OSIP (optimised SIP), a novel tight symbolic interval
propagation method for the verification of feed-forward neural networks.

Given a network and lower and upper bounds of its inputs, OSIP estimates
lower and upper bounds of the network’s output nodes. OSIP can then potentially
use these bounds to determine the satisfaction of the verification property in
question. OSIP is incomplete in that the bounds may be overestimated to such
a degree that solving the verification problem is not possible.

The key novel element of OSIP consists in a novel treatment of the ReLU
function whereby the linear approximation of the function is selected via opti-
misation. As it will be clear in the next section, this results in a method that
in experiments calculates the tightest overestimation when compared to lead-
ing methods. The size of the approximation is essential in incomplete methods.
Intuitively, the smaller the uncertainty, the more likely it is that a verification
query can be solved.

Overview. OSIP is an instance of verification algorithms operating by overap-
proximating the network computation (see Algorithm 1 for a high level descrip-
tion of this class of algorithms). The method computes an overapproximation R̂
of the reachable output set R = {f(x) | x ∈ X} for a given network f and
set of inputs X concerning a verification problem ∀x ∈ X : f(x) ∈ Y. This
over-approximation is obtained from a layer-by-layer application of the layers’
functions to the input set X , where the ReLU function is linearly relaxed.

Depending of the tightness of the overapproximation, Algorithm 1 may or
may not be able to solve the verification problem. In particular, if R̂ ⊆ Y,
then the algorithm outputs yes, i.e., the verification property is satisfied. For

OSIP: A Tight Abstraction Method for NN Verification 467

Fig. 1. Over-approximation of a network’s bounds. The network has a two-dimensional
input and two layers: an affine transformation layer and a ReLU layer. The veri-
fication problem ∀x ∈ X : f (x) ∈ Y ′ is satisfied whereas the verification problem
∀x ∈ X : f (x) ∈ Y cannot be solved.

instance, if analysing a local adversarial problem and R̂ ⊆ Y, then all images
whose network output is within R̂ are classified equally to the image given
as input to the problem. Since these images form a superset of the set X of
images within the norm-ball of the image in question, the verification problem
is satisfied.

Otherwise, if R̂ �⊆ Y, then Algorithm1 outputs unknown, i.e., the verification
problem cannot be solved. For instance, if analysing a local adversarial problem
and R̂ �⊆ Y, then any image whose network output is within R̂\Y, i.e., any image
that potentially falsifies the verification problem, may or may not lie within the
norm-ball of the image in question; consequently, it cannot be used to falsify the
verification problem. Figure 1 gives a graphical illustration of these two possible
outcomes of Algorithm 1.

Detailed Description. In line with previous symbolic interval propagation
methods [26,31,32,37], OSIP analyses a given network in a layer-by-layer fashion,
where for each node ni,j , it constructs the following:

– a (symbolic) linear constraint β≥
i,j of its lower bound, built from variables

expressing the inputs to the node,
– a similarly defined linear constraint β≤

i,j of its upper bound;
– a concrete (i.e., numeric) lower bound li,j ,
– a concrete upper bound ui,j .

This results in the derivation of concrete lower and upper bounds for the output
nodes of the network, which can potentially be used to determine the satisfaction
of the verification problem as per Algorithm 1.

468 V. Hashemi et al.

Fig. 2. A feed-forward neural network. The inputs are depicted in green colour. Con-
crete ranges next to a node indicate the concrete lower and upper bounds of the node
as obtained via OSIP. Symbolic ranges next to a node indicate the lower and upper
bound constraints of the node as obtained via OSIP.

Following the presentation from [26] we now describe the computation of the
constraints and bounds for each of the types of layers constituting the networks
considered in this paper. The novel elements of OSIP consist in the treatment
of the ReLU and max-pool layers. In the following we use symbolic variables
vi,j for the value of each node ni,j ; we use these variables to build the bound
constraints. To exemplify each computation we use the network from Fig. 2. We
begin with the constraints and bounds of the input to the network. We then
propagate these through the network to derive the constraints and bounds of
the output of the network.

Input. The constraints and bounds for the input to the network are instantiated
from the bounds of the input prescribed by the verification problem:

β≥
0,j = lj ; β≤

0,j = uj ; l0,j = lj ; u0,j = uj .

Affine Transformation Layer. Given the vector vi =
[
vi,1,vi,2, . . . ,vi,si

]T of
layer i’s variables, the lower and upper bound constraints of an affine transfor-
mation layer f i+1 are defined by:

β≥
i+1,j = β≤

i+1,j = W
(i+1)
j,: vi.

In other words, the lower and upper bound constraints for affine transforma-
tion layers are identical and instantiated to the network function for the node in
question.

Example 1. Consider the network from Fig. 2. Given the vector of input variables[
v0,1 v0,2

]T , the lower and upper bound constraints of node n1 ,1 are

β≥
1,1 = β≤

1,1 = W
(1)
1,:

[
v0,1 v0,2

]T =
[−2 1

] [
v0,1 v0,2

]T = −2v0,1 + v0,2.

OSIP: A Tight Abstraction Method for NN Verification 469

The concrete bounds of the layer are obtained by replacing the variables in
the nodes’ constraints with their associated lower or upper bound constraints,
depending on the signs of the variables. In particular, to compute the lower
bound (upper bound, respectively) of a node, we replace the variables within its
lower bound constraint (upper bound constraint, respectively) with the lower
bound constraints (upper bound constraints, respectively) of the nodes of the
previous layer if the sign of the variables is positive; otherwise, if it is negative,
then we use the upper bound constraints (lower bound constraints, respectively)
of said nodes. We continue by replacing the newly introduced variables with
their corresponding constraints, and so on, until the constraints depend only on
the input variables whereby we can compute the concrete bounds.

Formally, the derivation of the concrete bounds is defined as follows. We
begin by replacing the vi,j variables in β≥

i+1 and β≤
i+1 with their corresponding

bound constraints:

β≥
i+1,j =

(
W

(i+1)−
j,: β≤

i + W
(i+1)+
j,: β≥

i

)
vi−1,

β≤
i+1,j =

(
W

(i+1)−
j,: β≥

i + W
(i+1)+
j,: β≤

i

)
vi−1,

where:

– W (i+1)− and W (i+1)+ are obtained from min(W (i+1), 0) and max(W (i+1), 0)
with the element-wise application of the min and max functions;

– W
(i+1)x
j,: βy

i , x ∈ {−,+}, y ∈ {≤,≥}, denotes (with slight abuse of notation)

the multiplication of W
(i+1)x
j,: with the matrix of the coefficients of the con-

straints βy
i over vi−1.

We then repeat this back-substitution step until all layers have been pro-
cessed and the upper and lower bounds for the node in question are instantiated
by numerical values.

Example 2. Consider the network from Fig. 2. We execute the computation of
the concrete lower and upper bounds of node n3 ,1 whose lower and upper bound
constraints are

β≥
3,1 = 0.5 · v2,1 + 2 · v2,2 ≤ v3,1 ≤ 0.5 · v2,1 + 2 · v2,2 = β≤

3,1.

We begin by replacing the variables v2,1, v2,2 in β≥
3,1 with the lower bound

constraints of nodes n2 ,1 , n2 ,2 and by replacing said variables in β≤
3,1 with the

upper bound constraints of said nodes:

0 ≤ v3,1 ≤ 0.37 · v1,1 + 0.28 · v1,2 + 1.41.

Next, we perform similar replacements to the newly introduces variables:

0 ≤v3,1 ≤ −1.02 · v0,1 + 0.09 · v0,2 + 1.41

470 V. Hashemi et al.

Fig. 3. Convex approximations of the ReLU function ReLU(x) = max(x, 0).

From above, the concrete lower bound of v3,1 equals 0. To obtain its concrete
upper bound, we replace v0,1 with the lower bound of its associated input and
v0,2 with the upper bound of its associated input. This gives 0 ≤ v3,1 ≤ 2.61.

Remark 1. Observe that the concrete bounds for a node can alternatively be
directly computed by replacing the variables in the bound constraints of the
node with the concrete bounds of the nodes associated with the variables. While
this is more efficient than the back-substituting the variables, it is known to lead
to looser bounds [24].

ReLU layer. The derivation of the bound constraints for a ReLU node requires
a convex approximation of the ReLU function ReLU(x) = max(x, 0). The opti-
mal convex approximation of the function is the triangle approximation [9]. The
approximation bounds the function from above with ReLU(x) ≤ u

u−l (x − l),
where l and u are the lower and upper bounds of x, and from below with
ReLU(x) ≥ 0, ReLU(x) ≥ x (Fig. 3a). Though optimal, the approximation is
problematic in that it uses two lower bound constraints, thereby leading to an
exponential blow-up of the number of constraints required for the overall anal-
ysis [26]. To circumvent this, the ReLU function is instead typically bounded
from below with ReLU(x) ≥ λx, λ ∈ [0, 1]. Commonly used approximations are
the parallel approximation with λ = u

u−l (Fig. 3c) [31,33], the zero approxima-
tion with λ = 0 (Fig. 3b) [26,37] and the identity approximation with λ = 1

OSIP: A Tight Abstraction Method for NN Verification 471

(Fig. 3d) [26,37]. State-of-the-art methods select a node’s approximation either
on the basis of the minimum maximum distance from the ReLU function [32]
(i.e., always select the parallel approximation) or in terms of the smallest over-
approximation area induced [26,37] (i.e., the select the identity approximation
if |l| < u, otherwise the zero approximation). However, as we experimentally
show in the next section, since these heuristic rules operate at a local, neuron
level and do not account for intra-layer neuron dependencies, their comparative
performance (in terms of the tightness of the derived output bounds) varies with
different verification problems.

Differently from these works, we now propose a method that efficiently deter-
mines the ReLU approximation for each node via optimisation. The key idea is
to jointly optimise the approximation slopes of a layer to bring about the tightest
bounds in the subsequent layer. By jointly optimising the slopes we account for
the nodes’ intra-layer dependencies and the influence thereof in the bounds of
the subsequent layer. As we experimentally show in the next section, this results
in a method that consistently outperforms the leading methods.

We focus on optimising the slopes to maximise the concrete lower bounds of
layer i+1; the case of minimising the upper bounds is analogous. We begin with
setting

β≥
i+1,j = λ≥

i+1,jvi,j , β≤
i+1,j =

ui,j

ui,j − li,j
(vi,j − li,j),

where λ≥
i+1,j is an optimisation variable for the slope of node ni+1 ,j and vi,j

is the variable representing the input to said node. Now, recall that the bound
constraints β≥

i+2, β≤
i+2 of the subsequent layer are constraints over the variables

associated with the nodes at layer i+1. By performing a single back-substitution
step we obtain the constraints W (i+2)−β≤

i+1 + W (i+2)+β≥
i+1 which are over the

variables associated with the nodes at layer i. These constraints can be used to
compute the concrete lower bounds of layer i + 2 by concretising their variables
as follows: li+2 = K+li + K−ui, where K = W (i+2)−β≤

i+1 + W (i+2)+β≥
i+1. Our

aim is to derive the approximations which maximise the sum of these bounds.
Formally, our aim is to solve the following optimisation problem:

max
λ

≥
i+1

∑

j

K+
j,:li,j + K−

j,:ui,j

subject to K = W (i+2)−β≤
i+1 + W (i+2)+β≥

i+1,

β≥
i+1,j = λ≥

i+1,jvi,j , β≤
i+1,j =

ui,j

ui,j − li,j
(vi,j − li,j),

λ≥
i+1,j ∈ [0, 1].

(1)

The solution to this optimisation problem determines the slopes to be used
in the lower bound constraints β≥

i+1 = λ≥
i vi when computing the concrete lower

bound of a node in a subsequent layer using back-substitution. The analogous
optimisation problem (which minimises the bounds in the subsequent layer)
determines the slopes λ≤

i to be used when computing the upper bound of a
node in a subsequent layer.

472 V. Hashemi et al.

This concludes the derivation of the bound constrains for a ReLU node. The
concrete bounds of each ReLU node ni,j are

li+1,j = min(λ≥
i+1,j · li,j ,λ

≤
i+1,j · li,j), ui+1,j = ui,j .

Remark 2. Note that the optimisation problem 1 is non-convex and therefore
hard to solve for large layers. Still, as we experimentally show in the next section,
instead of jointly optimising the slopes of layer i+1 to tighten all concrete bounds
in layer i + 2, it is sufficient to consider the bounds of only a small number of
nodes to efficiently and consistently (i.e., for all the networks and radii considered
in our experiments) outperform the state-of-the-art. We hereafter refer to this
number of nodes as the number of optimised nodes parameter. The selection
of the nodes to be considered in the optimisation problem is carried out on
the basis of the looseness of the nodes’ bounds: the nodes having the looser
bounds are the ones to be selected. The bounds are computed by concretising
the nodes’ bound constraints with the concrete bounds from layer i + 1, i.e.,
W (i+2)−ui+1+W (i+2)+li+1 for the lower bounds and W (i+2)+ui+1+W (i+2)−li+1

for the upper bounds (note that as the bounds li+1 depend on the approximation
slopes of layer i+1, which have not been determined yet, we here use the slopes
from the smallest overapproximation area heuristic).

Example 3. Consider the network from Fig. 2. We execute the computation of
the upper and lower bound constraints of node n2 ,1 . The concrete lower and
upper bounds of the input v1,1 to the node are −1.5 and 4, respectively. We
therefore have that the upper bound constraint equals

β≤
2,1 =

4
4 − (−1.5)

(v1,1 − (−1.5)) = 0.73v1,1 + 1.09.

We compute two lower bound constraints for the node: one constraint to be used
in the back-substitution process for the computation of a concrete lower bound
of a node in a subsequent layer; the other to be used for the computation of a
concrete upper bound. Consider the former constraint. The constraint has the
form β≥

2,1 = λ≥
2,1 · v1,1. To determine λ≥

2,1, we maximise the sum of the lower
concrete bounds of nodes n3 ,1 and n3 ,2 :

max
λ

≥
2,1,λ

≥
2,2

l3,1 + l3,2

= max
λ

≥
2,1,λ

≥
2,2

0.5 · v2,1 + 2 · v2,2 − v2,1 + 3 · v2,2

= max
λ

≥
2,1,λ

≥
2,2

0.5 · λ≥
2,1 · v1,1 + 2 · λ≥

2,2 · v1,2 − 0.73 · v1,1 − 1.09 + 3 · λ≥
2,2 · v1,2

= max
λ

≥
2,1,λ

≥
2,2

−0.75λ≥
2,1 − 15λ≥

2,2 − 4.01.

Since 0 ≤ λ≥
2,1 ≤ 1, 0 ≤ λ≥

2,2 ≤ 1, it follows that λ≥
2,1 = 0. Analogously we

can determine the slope λ≤
2,1 of the constraint β≥

2,1 = λ≤
2,1 · v1,1 associated with

OSIP: A Tight Abstraction Method for NN Verification 473

the computation of concrete upper bounds by minimising the sum of the upper
concrete bounds of nodes n3 ,1 and n3 ,2 : λ≤

2,1 = 0.

Max-pool Layers. We provide a novel treatment of max-pool layers (in the con-
text of SIP) as follows. To derive the bound constraints of a max-pool node, we
express the max-pool function as a sequence of affine transformations and ReLU
layers, whose constraints can be computed as above. We begin with expressing
the multivariate maximum function as a composition of maximum functions of
two variables:

max(v1, v2, . . . , vn−1, vn) = max(. . . max(max(max(v1, v2), v3), v4) . . . , vn)

Then we use that max(v1, v2) = max(v1 − v2, 0) + v2 to obtain

max(v1, v2, . . . , vn−1, vn)

= max(. . .max(max(max(v1 − v2, 0) + v2 − v3, 0) + v3 − v4, 0) + v4

. . . − vn, 0) + vn

= ReLU(. . .ReLU(ReLU(ReLU(v1 − v2) + v2 − v3) + v3 − v4) + v4 . . . − vn) + vn,

which is a sequence of affine and ReLU transformations.
Note that this symbolic treatment of max-pools differs from [26], where the

upper bound constraints are concretised to equal the concrete upper bounds,
thereby potentially leading to bigger overapproximations. Also note that our
symbolic treatment comes at the cost of computing bound constraints for the
affine transformation and ReLU layers that compose the max-pool one.

Summary. Having concluded the description of the various approximations,
Algorithm 2 summarises the overall algorithm that computes R̂ from Algo-
rithm 1. Algorithm 2 and Algorithm 1 can therefore be combined to solve a
verification query.

4 Implementation and Evaluation

In this section we evaluate OSIP, the verification procedure introduced in the
previous section, and present comparisons with different approximations of the
ReLU function and with Eran [26], a state-of-the-art SIP-based tool. OSIP is
implemented in Python 3.7 on top of Venus, a MILP-based, complete tool with
several optimisations including dependency analysis [4,19]. The experiments
were carried out on an Intel Core i9-10920X (12 cores) equipped with 128GB
RAM, running Linux kernel 5.4.

Comparison with Different ReLU Aapproximations. We compare OSIP
with the zero [26,37], identity [26,37] and parallel [31,33] approximations. We
also compare OSIP with the Min Area [26,37] heuristic which selects the approx-
imation with the smallest over-approximation area for each ReLU node. The
comparisons are drawn with respect to the tightness of the bounds of the out-
put nodes, which is a key aspect to (i) determine the ability of a method to

474 V. Hashemi et al.

Algorithm 2. OSIP
1: procedure Approximation of Output Bounds(f , l,u)
2: Input: network f , vectors of input lower and upper bounds l and u
3: Output: vectors of output lower and upper bounds
4: f ′ ← replace each max-pool in f as a composition of affine and ReLU trans-

formations
5: β≥,l

0 ,β≥,u
0 ← l, l0 ← l

6: β≤
0 ← u, u0 ← u

7: for each layer f ′
i in f ′ do

8: if f ′
i is an affine transformation layer then

9: β≥,l
i ,β≥,u

i ← W (i)vi−1, β≤
i ← W (i)vi−1

10: li ← W (i), ui ← W (i)

11: for j ← i to 1 do
12: li ← l−

i β≤
i−1 + l+i β≥,l

i−1, ui ← u−
i β≥,u

i−1 + u+
i β≤

i−1

13: else if f ′
i is a ReLU layer then

14: for each neuron j in the layer do
15: β≤

i,j ← u i,j

u i,j−li,j
(vi,j − li,j)

16: λ≥
i,j ← solution to optimisation problem 1

17: λ≤
i,j ← solution to the analogous minimisation problem of 1

18: β≥,l
i,j ← λ≥

i,j · vi,j β≥,u
i,j ← λ≤

i,j · vi,j

19: ui,j ← ui−1,j

20: li,j ← min(λ≥
i,j · li−1,j ,λ

≤
i,j · li−1,j)

return lL,uL

resolve a verification query (as discussed in Sect. 3) and (ii) formulate strong
mixed integer linear programming encodings towards improved scalability in
complete verification [29]. We consider the following benchmarks for fully con-
nected ReLU FFNNs from the first competition for neural network verification
(VNN-COMP) [30]:

– ACASXU [16] is a collection of 45 ReLU FFNNs which were developed as
part of an airborne collision avoidance system to advise horizontal steering
decisions for unmanned aircraft. Each network has 5 inputs, 300 ReLU nodes
arranged in 6 layers with 50 neurons each, and 5 outputs. We verify the net-
works against the safety specifications from [17]. These include four properties
that are checked on all of the 45 networks and 6 properties that are checked
on a single network. Overall this results in a total of 186 verification problems.

– MNIST [20] is a dataset comprising images of hand-written digits 0–9, each
formatted as a 28 × 28 × 1-pixel grayscale image.
We use three fully connected ReLU FFNNs trained on the dataset: FC2,
FC4 and FC6. The networks comprise 2, 4 and 6 layers, respectively. Each
layer of each of the networks has 256 ReLU nodes. We verify the networks
against the local adversarial robustness property w.r.t 25 correctly classified
images and perturbation radii of 0.02 and 0.05. This results in a total of 150
verification problems.

OSIP: A Tight Abstraction Method for NN Verification 475

We additionally use two convolutional networks: Conv1 and Conv3. The
architecture of the networks includes two layers. The first layer has 32 filters
of size 5×5, a padding of 2 and strides of 2. The second layer has 64 filters of
size of 4×4, a padding of 2 and strides of 1. Conv3 has the same architecture
with Conv1 but for 128 filters in the second layer. We verify the networks
against the local adversarial robustness property w.r.t 100 correctly classified
images. We use a perturbation radius of 0.1 for Conv1 and 0.3 for Conv3.

OSIP was run with the number of optimised nodes parameter set to 4 for all
fully connected networks and to 200 for all convolutional networks.

Table 1 reports the experimental results obtained. We observe that the
zero and Min Area approximations always outperform the identity and par-
allel approximations. However, the comparative performance of the zero and
Min Area approximations varies with the networks and perturbation radii. For
instance, the zero approximation outperforms the Min Area one on FC2 for
the 0.05 radius, whereas the Min Area approximation outperforms the zero one
on the same network for the 0.02 radius. In contrast, OSIP consistently outper-
forms all of the approximations on all of the networks and radii, often exhibiting
less than half of the bound interval of either the zero or the Min Area approxi-
mation.

We additionally observe that OSIP is more effective for fully connected net-
works than it is for convolutional ones. We conjecture that this is because the
nodes in a convolutional layer are only connected to a small subset of nodes in
the previous layer thereby exhibiting less sensitivity to intra-layer dependencies
between the nodes.

Lastly we note that OSIP needs only small values for the number of optimised
nodes parameter to outperform all of the approximations. Indeed, as we can
observe from Fig. 4, which shows the average bound interval of the output nodes
computed by OSIP on FC6 as a function of the parameter, said interval initially
decreases rapidly before having a more gradual decrement with larger values of
the parameter.

Comparison on VGG16. We now proceed to evaluate OSIP on a variant of
the VGG16 model [25] that forms a key component of the Multi-View 3D Detec-
tor (MV3D) [5], a high-accuracy 3D object detection network for autonomous
driving. The model we produced was trained on the GTSRB dataset [27].

The model comprises the sequence of layers c(32, 3, 3), c(32, 3, 3), p(2, 2),
c(64, 3, 3), c(64, 3, 3), p(2, 2), c(128, 3, 3), c(128, 3, 3), c(128, 3, 3), p(2, 2),
c(128, 3, 3), c(128, 3, 3), c(128, 3, 3), 43, where c(α, β, γ) denotes a convolutional
layer with output channel α, kernel width β and kernel height γ (padding and
strides equal 1 for all convolutional layers), p(α, β) denotes a pooling layer with
pooling width α and pooling height β, and 43 denotes a fully connected layer
of 43 nodes. In total the network has 290304 ReLUs. We chose to run this exper-
iment to evaluate the performance of OSIP on large perception systems that are
closer in size to industrial applications.

476 V. Hashemi et al.

Table 1. Experimental results comparing the ReLU approximations from Sect. 3. The
ver columns report the number of images that were verified, the time column reports
the average times, and the range column reports the average range of the bounds of the
output nodes. Highlighted cells denote the approximation that generated the tightest
bounds. The zero, identity, parallel and Min Area approximations have equal average
times.

Model Radius OSIP Zero Identity Parallel Min Area

ver time range ver time range ver range ver range ver range

FC2
0.02 15 12.24 0.21 13 0.06 0.44 1 15.18 13 0.58 14 0.29

0.05 0 15.89 2.98 0 0.05 3.33 0 52.30 0 12.53 0 6.61

FC4
0.02 21 10.4 0.32 17 0.10 0.81 3 1.15K 17 4.31 21 0.99

0.05 0 24.76 182.3 0 0.10 310.6 0 20K 0 16.6K 0 251.87

FC6
0.02 17 14.89 159.71 8 0.15 243.53 0 245K 15 1.5K 18 161.21

0.05 0 29.96 13.2K 0 0.15 13.2K 0 4.29e6 0 19.3K 0 14.7K

Conv1 0.1 88 11.76 10.83 72 5.27 16.05 16 32.60 81 13.80 89 11.62

Conv3 0.3 5 16.65 13.66 0 7.43 28.12 0 62.10 0 40.89 4 14.15

ACASXU - 3 0.69 899.73 3 0.00 1.02K 0 38K 2 4.6K 10 1.9K

We verified the local robustness of the VGG16 for perturbation radiuses
of 0.001, 0.0015, and 0.002 against 10 correctly classified images from the
GTSRB dataset. We compare OSIP with Eran [26], a tool for the verification
of feed-forward neural networks whose DeepPoly domain (which is SIP with the
Min Area approximation) presents the state-of-the art in bound propagation-
based methods. We refer to [30] for more tools and details.

OSIP was run with the number of optimised nodes parameter set to 200.
Eran was run using the DeepPoly domain. Each verification problem was run
with a timeout of two days. Table 2 reports the experimental results obtained.
We observe that OSIP provides tighter bounds than Eran, ranging from three
times tighter bounds for the smallest perturbation radius to progressively tighter
bounds for the larger perturbation radiuses. As previously discussed, this directly
impacts the number of verification queries that each tool is able to solve. Both
tools were able to resolve some of the queries for the smallest perturbation radius
(with OSIP resolving 9 of them and Eran 5 of them). In our experiments only
OSIP was able to resolve some of the queries (5 of them) for the intermediate
radius; none of the tools was able to resolve any query for the largest pertur-
bation radius. As far as we are aware these are the first documented successful
verification results for large and complex perception systems such as VGG16
and for perturbation radiuses of 10−3. We note that additional experiments on
the refinepoly domain of Eran, which is DeepPoly enhanced with optimisation-
based bound tightening methods, were not concluded after the timeout of two
days. Also, experiments with NNV [14], a set-based verification tool for neural
networks, were not concluded because of memory errors.

OSIP: A Tight Abstraction Method for NN Verification 477

Fig. 4. Average bound interval of the output nodes and average runtime of OSIP as a
function of the number of optimised nodes for the FC6 network and the 0.02 pertur-
bation radius.

Table 2. Experimental results obtained on VGG16. The ver columns report the number
of images that were verified, the time column reports the average times, and the range
column reports the average range of the bounds of the output nodes.

Radius OSIP Eran (Deeppoly)

ver (#) time (s) range ver (#) time (s) range

0.0010 9 66811 0.0179 5 9605 0.0460

0.0015 7 66889 0.0623 0 9718 0.4921

0.0020 0 66642 0.2915 0 10040 18.5823

The bound tightness exhibited by OSIP comes at the cost of the tool being
slower (approximately 6.5 times) than Eran. This is mainly to be attributed to
the handling of the max-pooling layers where additional layers are introduced
to the analysis chain of OSIP.

5 Conclusions

In this paper we analysed the problem of obtaining tight bounds for the verifi-
cation of feed-forward neural networks. As we observed, present state-of-the-art
incomplete tools may often be unable to determine the result of a verification
query for large and deep models, such as those in object classifiers, due to the
compounding errors in the bound estimations.

We presented OSIP, a novel verification method based on symbolic interval
propagation. OSIP provides tighter approximations than the present SoA approx-
imations of a single univariate ReLU function in most commonly accepted bench-
marks. This is obtained by determining the choice of the ReLU approximation
at each node via optimisation.

We additionally benchmarked OSIP against Eran, a state-of-the-art symbolic
interval propagation tool. To assess their performance in a setting close to indus-
trial applications we carried out experiments on a variant VGG16, the largest

478 V. Hashemi et al.

component of the MV3D object detector and classifier for autonomous vehicles.
This is a convolutional neural network consisting of approximately 300,000 ReLU
nodes. In our benchmarks OSIP obtained bounds that were at times two orders
of magnitude smaller than Eran.

Tighter bounds are directly linked to an increased ability to reduce the num-
ber of unknowns in the verification queries. This was confirmed in our experi-
ments in which we documented cases in which OSIP was the only method capable
of solving the verification query. In summary, to the best of our knowledge, at
present OSIP constitutes the most performing tool for the verification of VGG16.

Acknowledgements. The authors acknowledge support from the Audi Verifiable AI
project and by BMWi under the KARLI project (grant 19A21031C).

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Progr.
183(1), 3–39 (2020). https://doi.org/10.1007/s10107-020-01474-5

2. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Proceedings of the 30th
International Conference on Neural Information Processing Systems (NIPS16), pp.
2613–2621 (2016)

3. Battern, B., Kouvaros, P., Lomuscio, A., Zheng, Y.: Efficient neural network ver-
ification via layer-based semidefinite relaxations and linear cuts. In: International
Joint Conference on Artificial Intelligence (IJCAI21), pp. 2184–2190. ijcai.org
(2021)

4. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of neural networks via dependency analysis. In: Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI20). AAAI Press (2020)

5. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network
for autonomous driving. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1907–1915 (2017)

6. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

7. Dathathri, S., et al.: Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming. In: NeurIPS20 (2020)

8. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to
scalable verification of deep networks. In: UAI. vol. 1, p. 2 (2018)

9. Ehlers, R.: In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 19

10. Fazlyab, M., Morari, M., Pappas, G.J.: Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming (2019).
arXiv preprint arXiv:1903.01287

11. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018). https://doi.org/10.1007/s10601-018-9285-6

https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
http://arxiv.org/abs/1903.01287
https://doi.org/10.1007/s10601-018-9285-6

OSIP: A Tight Abstraction Method for NN Verification 479

12. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples (2014). arXiv preprint arXiv:1412.6572

13. Henriksen, P., Lomuscio, A.: DEEPSPLIT: an efficient splitting method for neu-
ral network verification via indirect effect analysis. In: Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI21), pp. 2549–2555.
ijcai.org (2021)

14. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 1

15. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

16. Julian, K., Lopez, J., Brush, J., Owen, M., Kochenderfer, M.: Policy compression
for aircraft collision avoidance systems. In: DASC16, pp. 1–10 (2016)

17. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

18. Katz, G., et al.: The marabou framework for verification and analysis of deep neural
networks. In: Proceedings of the 31st International Conference on Computer Aided
Verification (CAV19), pp. 443–452 (2019)

19. Kouvaros, P., Lomuscio, A.: Towards scalable complete verification of relu neural
networks via dependency-based branching. In: International Joint Conference on
Artificial Intelligence (IJCAI21), pp. 2643–2650. ijcai.org (2021)

20. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits
(1998)

21. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks. CoRR abs/1706.07351 (2017)

22. Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive
refinement and adversarial search. In: ECAI20 (2020)

23. Raghunathan, A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: Advances in Neural Information Processing
Systems 31, pp. 10877–10887. Curran Associates, Inc. (2018)

24. Salman, H., Yang, G., Zhang, H., Hsieh, C., Zhang, P.: A convex relaxation bar-
rier to tight robustness verification of neural networks. In: Advances in Neural
Information Processing Systems 32, pp. 9835–9846. Curran Associates, Inc. (2019)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014). arXiv preprint arXiv:1409.1556

26. Singh, G., Gehr, T., Püschel, M., Vechev, P.: An abstract domain for certifying neu-
ral networks. In: Proceedings of the ACM on Programming Languages 3(POPL),
41 (2019)

27. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The german traffic sign recogni-
tion benchmark: a multi-class classification competition. In: The 2011 International
Joint Conference on Neural Networks, pp. 1453–1460. IEEE (2011)

28. Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W., Patel, K., Vielma, J.:
The convex relaxation barrier, revisited: tightened single-neuron relaxations for
neural network verification. In: NeurIPS20 (2020)

29. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: Proceedings of the 7th International Conference
on Learning Representations (ICLR19) (2019)

http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1409.1556

480 V. Hashemi et al.

30. VNN-COMP: Vefication of neural networks competition (2020). https://sites.
google.com/view/vnn20/vnncomp

31. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety anal-
ysis of neural networks. In: Proceedings of the 31st Annual Conference on Neural
Information Processing Systems 2018 (NeurIPS18), pp. 6369–6379 (2018)

32. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX
Security Symposium, (USENIX18), pp. 1599–1614 (2018)

33. Weng, T., et al.: Towards fast computation of certified robustness for relu networks
(2018). arXiv preprint arXiv:1804.09699

34. Wong, E., Kolter, J.: Provable defenses against adversarial examples via the convex
outer adversarial polytope (2017). arXiv preprint arXiv:1711.00851

35. Wong, E., Schmidt, F., Metzen, J., Kolter, J.: Scaling provable adversarial defenses.
In: Proceedings of the 32nd Conference on Neural Information Processing Systems
(NeurIPS18) (2018)

36. Xiang, W., Tran, H., Johnson, T.: Output reachable set estimation and verification
for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(11),
5777–5783 (2018)

37. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Proceedings
of the 31st Annual Conference on Neural Information Processing Systems 2018
(NeurIPS2018), pp. 4944–4953. Curran Associates, Inc. (2018)

https://sites.google.com/view/vnn20/vnncomp
https://sites.google.com/view/vnn20/vnncomp
http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/1711.00851

	OSIP: Tightened Bound Propagation for the Verification of ReLU Neural Networks
	1 Introduction
	2 Preliminaries
	3 OSIP: Tightened Bound Propagation
	4 Implementation and Evaluation
	5 Conclusions
	References

